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1 Introduction

“The mathematician’s patterns, like the painter’s or the
poet’s, must be beautiful; the ideas, like the colors or the
words must fit together in a harmonious way. Beautly is the
first test; there is no permanent place in this world for ugly
mathematics.”

G.H. Hardy (1877-1947)

Public Key Cryptography — A concept straight from the Book

In 1976, Whitfield Diffie and Martin Hellman [26] came up with a new idea that lead
to a revolution in the field of cryptography: They designed a protocol, in which two
people can agree on a common secret key over an insecure channel like the internet.
This so-called key exchange protocol is named the Diffie-Hellman key exchange. The
basic principle in their protocol is the use of a so-called one-way function. Informally,
this is a mathematical function that is easy to compute but computationally infeasible
to invert.

As a candidate for such an one-way function, Diffie and Hellman proposed the discrete
exponentiation function. Let n be an integer and denote by Z, := {0,1,...,n — 1} the
ring of integers modulo n. Furthermore, let p be a prime. It is not hard to see that Z,
together with the multiplication forms an abelian, cyclic group G of order p — 1. Let
g € G be a generator of G. Then the function f(g,z) = ¢* mod p is called the discrete
exponentiation function.

Assume now that two persons, Alice and Bob, want to commit to a secret key k.
In the Diffie-Hellman protocol, Alice chooses a secret number a € Z,_;, applies the
discrete exponentiation function f(g,a) = ¢* mod p and sends the value g mod p to Bob.
Likewise, Bob chooses a secret number b € Z,_1 and sends the value of f(g,b) = ¢? mod p
to Alice. Now, Alice can compute the value k& = f(g°,a) = ¢® mod p and Bob can
compute the same value k = f(g%,b) = g*° mod p.

On the other hand, an eavesdropper, Eve, who listens to Alice’s and Bob’s commu-
nication only learns the values ¢* and ¢°. The problem of computing the value ¢*® on
input (g, g%, ¢*) is known as the Diffie-Hellman problem. Obviously, one can reduce the
Diffie-Hellman problem to the computation of the inverse of the discrete exponentia-
tion function: On input (g, ¢”), compute the value of z. This inversion problem is also
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called the discrete logarithm problem. If Eve could solve the discrete logarithm problem
efficiently, then she could compute Alice’s secret number a and k = f(g°,a).

However, it is not known in general whether Eve really has to solve the discrete
logarithm problem in order to solve the Diffie-Hellman problem. In other words, it
is unknown whether the Diffie-Hellman problem is polynomial time equivalent to the
discrete logarithm problem. Polynomial time equivalence of both problems means that
every algorithm that solves the Diffie-Hellman problem in polynomial time can be turned
into an algorithm that solves the discrete logarithm problem in polynomial time and
vice versa. For some special kinds of groups G, the polynomial time equivalence of both
problems has been shown by Maurer and Wolf [47].

The discovery of Diffie and Hellman was the foundation of a new field in cryptography:
the public key cryptography. With the Diffie-Hellman protocol, people are able to securely
exchange a secret key k over an insecure channel that may be eavesdropped. After the
key exchange, they can use the key k in a so-called symmetric key cryptosystem to
communicate to each other. A cryptosystem is called symmetric if the same key is used
for both: encryption and decryption.

However, there is a drawback in this method: Assume that we have n users in an
insecure network and we want to allow each user to communicate securely to each other.
Then, we have to run the Diffie-Hellman protocol (g) times to establish a secret key for
each pair of users. Even more, every user has to store n — 1 secret keys. Clearly, for
networks like the internet with millions of users this is not practical.

RSA — An asymmetric cryptosystem

In 1978, Ron Rivest, Adi Shamir and Leonard Adleman [56] came up with a very elegant
solution for the key exchange problem: They invented the first public key cryptosystem,
called the RSA scheme. The fundamental improvement compared with Diffie-Hellman
is that every user needs only one pair of keys in order to communicate to each other in
the network: the public key/secret key pair.

The new idea in the RSA scheme is that different keys are used for encryption and
decryption of a message: The public key is used for encrypting messages whereas the
secret key is used for the decryption. Therefore, RSA is also called an asymmetric
cryptosystem. Actually, the idea of asymmetric cryptography was already due to Whit-
field Diffie but Rivest, Shamir and Adleman were the first who designed an asymmetric
cryptosystem '. The idea of an asymmetric scheme is as follows:

Assume that Alice has a public key £, and a secret key kg. She publishes k, on the
network, such that everyone can access her public key. Now, if Bob wants to send a

In the late 90s, it became public knowledge that the principle of asymmetric cryptography had been
first mentioned 1969 in a work by James Ellis who worked for the GCHQ), a top-secret English agency.
In 1973, Clifford Cocks from GCHQ developed a cryptosystem which is completely analogous to the
RSA scheme. One year later, Malcolm Williamson (also from GCHQ) discovered a key exchange
protocol similar to the Diffie-Hellman protocol. But due to the agency’s secrecy policy the reseachers
could not publish their results.



Introduction

message m to Alice, he encrypts m with Alice’s public key k,. In order to recover m
from the ciphertext, Alice uses her secret key kg in the decryption process.

In the case of the RSA scheme, the idea of an asymmetric scheme is realized in the
following way. Alice chooses two large primes p and ¢ and computes the product N = pq.
Then she selects a pair of integers (e, d), e - d > 1 which satisfies a certain relation:

m® = mmod N for all messages m € Zy,

where Zy denotes the ring of integers modulo N. In fact, ed = 1 mod ¢(NN) where
¢(N) :=(p—1)(g — 1) is Euler’s totient function. Alice is able to compute a pair (e, d)
satisfying such a relation since she knows the prime factorization of N. She publishes
the tuple (N, e) which serves as her public key k, and she keeps the key ks = d secret.

Now anyone who wants to send a message m € Zy to Alice takes her public key
(N,e) and computes the ciphertext m® mod N. Similar to the Diffie-Hellman protocol,
the so-called RSA encryption function f(x) = x°mod N is assumed to be a one-way
function. Hence an attacker who knows the ciphertext m® mod N together with the
public key (N, e) should not be able to compute the value of m.

But in contrast to the Diffie-Hellman protocol, Alice wants to invert the RSA en-
cryption function in order to read the message m, i.e., she wants to compute the e root
of m® modulo N. She can decrypt by using her secret key ks = d, namely she simply
computes (me)d = m mod N. That means Alice possesses a trapdoor that allows her to
invert the encryption function: the secret key d or likewise the factorization of N from
which d can be derived. Therefore, we also call the RSA encryption function a trapdoor
one-way function.

Unfortunately, it is not known whether the discrete exponentiation function or the
RSA encryption function are indeed one-way functions. Even worse, one does not even
know whether one-way functions exist at all. On the other hand, in the standard com-
putational model there are no algorithms known that invert the discrete exponentiation
function or the RSA encryption function in polynomial time. Hence, these functions are
often referred to as candidate one-way functions. We want to remark that an algorithm
of Shor [61] solves both problems on a quantum computer in polynomial time, but it
seems to be a very hard task to build quantum computers in practice.

In the RSA scheme, we have an analogy to the relation between the Diffie-Hellman
problem and the discrete logarithm problem: Inverting the RSA encryption function
can be reduced to the problem of factoring N. However, it is not known whether these
two problems are polynomial time equivalent. In the literature it is often (misleadingly)
stated that the security of RSA is based on the hardness of factoring. This means that
RSA cannot be secure if factoring is feasible. On the other hand, one should be aware
that RSA must not be secure if factoring is computationally infeasible: There may be
other ways to compute e roots modulo N, i.e., other ways to invert the RSA encryption
function without factoring.
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In todays public key cryptography, the security of the theoretically and practically
most important systems relies either on the hardness of inverting the discrete exponenti-
ation function or on the hardness of inverting the RSA encryption function (respectively
the hardness of factoring). Unfortunately, public key cryptosystems that are based on
the discrete exponentiation function like the ElGamal scheme [29] and the Cramer-Shoup
scheme [24] suffer from the fact that they have message expansion rate of at least two.
That means, the ciphertext is at least twice as long as the underlying plaintext. This
might be the main reason that these schemes are used far less in practice than RSA.

In this thesis we will concentrate on the RSA encryption function. The RSA scheme
is the most popular and best studied public key cryptosystem. Since its invention 25
years ago, it has received a lot of attention in both academia and industry. The RSA
scheme is implemented as a standard in every web browser and it is commonly used
to secure financial transactions. The big impact of the RSA scheme on many real-life
applications is one of the reasons that Rivest, Shamir and Adleman received in 2003 the
famous Turing Award for their invention of the scheme.

Due to its importance and its beautiful, simple structure the RSA scheme has also at-
tracted many cryptanalysts (for a survey see [9]). But despite intensive research efforts,
from a mathematical point of view the only known method to break the RSA scheme is
the most obvious one: Find the factorization of N. There are numerous other so-called
side channel attacks on the scheme, but these attacks do not directly try to break the
scheme itself. Instead, an attacker in a side-channel attacks tries to learn information
about the secret key d by attacking physical implementations of RSA.

“The source of all great mathematics is the special case, the
concrete example. It is frequent in mathematics that every
wstance of a concept of seemingly great generality is in essence
the same as a small and concrete special case.”

Paul R. Halmos

Our Goal

In this thesis we try to invert the RSA encryption function by solving the factorization
problem. Our goal is to design algorithms that factor an RSA modulus N = pq in
time polynomial in the bit-size of N. Unfortunately, as stated before, it is not known
whether there exists a polynomial time algorithm that factors a composite integer V.
The asymptotically best algorithm, the Number Field Sieve, has running time sub-
exponential in the bit-size of N. On the other hand, this does not imply that there
are no practically interesting special cases for which the factoring problem turns out to
be efficiently solvable. Therefore, we try to relax the factorization problem in order to
obtain polynomial time algorithms.

Goal: Identify special instances of the factorization problem that can be solved in
polynomial time.
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There are many interesting scenarios in practice, where an attacker might be able to get
some additional information about the factorization of N from the parameters that are
used in the RSA scheme. One can view this additional information as a hint how to find
the factorization of N. In this thesis, we mainly deal with two sorts of hints in the RSA
parameters that turn our factorization problem into an efficiently solvable problem:

Information encoded in the public exponent e: The main drawback of RSA is its effi-
ciency. Therefore, it is tempting for crypto-designers to speed up the RSA encryp-
tion/decryption process by choosing key tuples (e, d) of a special structure. But then,
the public exponent e may contain useful information how to factor the modulus V.

Partial knowledge of the secret exponent d: In many side-channel attacks on RSA, an
attacker gets knowledge of the bits of d. We study the following question: How many
bits of d are sufficient in order to find the factorization of N.

All of the factorization algorithms that we design in this thesis will run on input N
and the additional information of our hint and will output the prime factors p, ¢ in
time polynomial in the bit-size of N. The main method that we use in order to design
our algorithms is an elegant approach proposed by Coppersmith [20] for finding small
roots of modular polynomial equations. This approach in turn is based on the famous
L3-algorithm by Lenstra, Lenstra and Lovész [44] for finding short lattice vectors.

An Overview of our results
We briefly describe the organization of the thesis and present the main results.

Chapter 2: In this chapter, we define the notion of a public key cryptosystem. We
present the RSA scheme and discuss its efficiency and security. Furthermore, we
define some basics of lattice theory.

Chapter 3: We introduce Coppersmith’s method [20] for finding small roots of modular
polynomial equations. We slightly generalize Coppersmith’s theorem for the uni-
variate polynomial case. To our knowledge, this new formulation of Coppersmith’s
method covers all applications of the univariate case given in the literature. We
present some of the most important applications:

e Attacking RSA with small e by knowing parts of the message.
e Factoring N = pq by knowing half of the bits of p.
e Factoring N = p”q for large r.

Finally, we explain how Coppersmith’s method can be extended (heuristically) to

multivariate polynomial equations.
(Parts of the results in this chapter were published at PKC 2004 [49].)

10
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Chapter 4: We introduce a generalization of Wiener’s famous attack [71] on the RSA
scheme. In 1990, Wiener observed that information encoded in the public exponent
e may help to facltor N. Namely, he showed that every e that corresponds to a secret
exponent d < N7 yields the factorization of N in polynomial time.

We extend Wiener’s result by showing that every e which corresponds to some d =
9 mod ¢(N) with

di < Nt and |do] < Nidy

yields the factorization of N. That means, not only small secret exponents d lead
to the factorization of N but also exponents d that have a “small decomposition”
in dy and dy. As an application of our new attack, we cryptanalyze an RSA-type
cryptosystem that was proposed in 2001 by Yen, Kim, Lim and Moon [73, 74].

Furthermore, we introduce the notion of weak public keys. Informally, a key (N, e)
is weak if it yields the factorization of N in polynomial time. We prove that our new
attack indentifies Q(N%*) weak RSA keys (N, e).

(Parts of the results in this chapter were published at PKC 2004 in a joint work with
Johannes Blomer [6].)

Chapter 5: In this chapter, we address an open problem that was raised in the work
of Wiener [71]: Is it possible to factor N if not d itself is small but if the value
d, == dmod p — 1 is small? The value d, is often used in fast variants of the RSA
decryption process. It is tempting to use small values of d,, in order to speed up the
decryption process even further.

We derive attacks for small d, but unfortunately our attacks are restricted to the
case of unbalanced prime factors p and ¢. In our scenario, the bit-size of the prime
factor ¢ has to be significantly smaller than the bit-size of p.

Our first meth(g)d works whenever ¢ < N%3%2_ Our second approach works for prime
factors ¢ < Ns. This bound is slightly worse than the bound of the first method,
but for small ¢ the second approach yields better results: It allows an attacker to
factor N for larger values of d,,.

(Parts of the results in this chapter were published at Crypto 2002 [48].)

Chapter 6: We present new partial key exposure attacks on the RSA scheme. Partial
key exposure attacks on RSA are attacks where an adversary knows a fraction of
the bits of d — for instance he may use side-channel attacks to learn some bits of
d. These partial key exposure attacks were introduced in a work of Boneh, Durfee
and Frankel [14] in 1999, where the authors raised the question whether there exist
attacks on RSA beyond the bound e = O(v/N).

We answer this question in the two most interesting cases, where an attacker knows
either the most significant bits (MSBs) of d or the least significant bits (LSBs) of d.

11
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For the MSBs, we present an attack that works up to 7the bound e < N%725_ In the
case of LSBs, our new attack even works up to e < Ns.

Furthermore, we design partial key exposure attacks when an attacker knows bits
of the value d), := d mod p — 1 (or symmetrically of d, := d mod ¢ — 1). As noticed
before, d,, is often used in fast variants of the decryption process. Our results are
strong when the public exponent is small: We need only half of the bits of d,, (either
MSBs or LSBs) in order to factor N. Since normally the bit-size of p is half of the
bit-size of IV, this is only an amount of a quarter of the bits of V.

Furthermore, we extend our attacks to moduli of the form N = p"q for some r > 1.
These moduli have recently found different applications in cryptography. Our results
show that moduli N = p”q are more susceptible to partial key exposure attacks than
the original RSA moduli N = pgq.

(Parts of the results in this chapter were published at Crypto 2003 in a joint work
with Johannes Blomer [5] and at PKC 2004 [49].)

Chapter 7: Many of our new attacks in the Chapters 4-6 rely on Coppersmith’s method
for modular multivariate polynomial equations. In order to apply this method, one
has to construct a lattice basis. However, this construction is a non-trivial task: It
is not clear, which choice of the lattice basis is optimal and how to analyze certain
properties of the lattice basis.

In Chapter 7, we present a method for optimizing lattice bases. Our method applies
to modular bivariate polynomials of a special form but may be extended to other
polynomials. The new approach can be seen as an alternative method to the so-called
geometrically progressive matrices that were introduced by Boneh and Durfee [12]
in 1999.

(Parts of the results in this chapter were published at the “Cryptography and Lattices
Conference 2001” in a joint work with Johannes Blomer [7].)

To conclude, we derive several polynomial time attacks on RSA using Coppersmith’s
method for finding small roots of modular polynomial equations. Interestingly, none of
these attacks seems to be applicable for cryptosystems that are based on the hardness of
the discrete logarithm problem. In fact, to our knowledge there are also no other attacks
of this type mentioned in the cryptographic literature. At the moment, it seems that
discrete logarithm based schemes are less vulnerable to these attacks. This resistance is
a good reason to select discrete logarithm based schemes more often for cryptographic
applications in the future.

12



2 RSA and Lattices

"A New Kind of Cipher that would Take Millions of Years to break”
Martin Gardner, Scientific American, 1977

"The Magic Words Are Squeamish Ossifrage”
Derek Atkins, Michael Graff, Arjen K. Lenstra, Paul C. Leyland, 1994

2.1 The RSA cryptosystem

The RSA cryptosystem has been published by Rivest, Shamir and Adleman [56] in
1978. It is the first public key cryptosystem (PKCS) in the literature and since its
invention it has attracted a lot of attention both from the practice and from the theory
of cryptography.

Let us first define the notion of a public key cryptosystem.

Definition 1 (PKCS) A public key cryptosystem is a five-tuple (P,C,K,E, D) satisfy-
ing the following conditions:

1. P is a finite set of possible plaintexts.
2. C is a finite set of possible ciphertexts.
3. The keyspace K is a finite set of possible keys.

4. For each K € K, there is an encryption rule ex € &, ex : P — C and a corre-
sponding decryption rule dx € D, di : C — P such that

di(ex(m)) =m
for every plaintext m € P.
5. The encryption function ex is public, whereas the decryption function dy is secret.

Notice that the fourth condition tells us that the decryption function dg is the inverse of
the encryption function ey, i.e., an application of d yields for every ciphertext ey (m)
the underlying plaintext message m.

13



The RSA cryptosystem

Furthermore, we are only interested in efficient public key cryptosystems, i.e., the key
K € K as well as the functions ex and dx should be efficiently computable. One of these
efficient cryptosystems is the RSA cryptosystem which we describe in the following.

Let us therefore introduce some useful notation. Let N be a positive integer. We
denote by Zy := {0,1,..., N — 1} the ring of integers modulo N. The set Z} C Zy
consists of all integers in Z that are coprime to N, i.e., Z} = {x € Zy | ged(z, N) = 1}.
It is not hard to see that the set Z7} forms an abelian group under multiplication. Here,
we only want to argue that every x € Z7% has a multiplicative inverse. It is well-known
that the Extended Euclidean Algorithm (see for instance [32], Section 3.2) computes
integers a, b such that

ax + bN = ged(z, N) = 1.

Reducing this equation modulo N gives us the congruence ax = 1 mod N and therefore
a is the multiplicative inverse of x modulo N.

Furthermore, we denote the number of elements in Z}; by ¢(N). The function ¢(V)
will also be called the Euler totient function. Notice that ¢(V) is a multiple of the group
order of ZY.

Now, we can describe the RSA scheme.

/ The RSA crypto-system \

Let N = pq, where p and q are primes. Let P = C = Zy. We define the keyspace K
as

K :={(N,e,d) | ed =1 mod ¢(N)}.
The public encryption function ey : Zy — Zy is defined by

ex(m) :=m®mod N.
The secret decryption function dg : Zy — Zpy is defined similarly:
dg (c) :== ¢ mod N.

Since e is determined by N and e, we call (N, e) the RSA public key tuple. N is
called an RSA modulus and e is called the public exponent. The secret value d is
@lled the secret key or the secret exponent. /

In order to show that the RSA system is really a PKCS, we must show that the decrypting
function inverts the encryption function. Let us rewrite the equation that defines the
keyspace K — which is also called the RSA key equation — as

ed =1+ k¢(N) for some k € N.

14
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Let m € Z3. Since ¢(N) = |Z} |, we know by Euler’s Theorem (see for instance [40],
Proposition 1.3.5) that m?®®) = 1 mod N. Therefore, we have

k
di (erc(m)) = me = m!HEeN) — . (m¢(N)) = m mod N.

Using the Chinese Remainder Theorem one can show that the above equation holds also
for every m € Zn \ Z},. Thus, the RSA cryptosystem satisfies all conditions for a PKCS
that are given in Definition 1.

Remark (Signatures with RSA): The RSA cryptosystem has the nice property that
the functions ex and dg are commutative. This means that for all m € Zy:

ex (dr(m)) = m.

Therefore, one can use RSA also as a signature scheme. It works in the following way:
A user signs a message m by computing the signature dx (m) with his secret key. Now,
everyone can check the validity of the signature by inverting dx (m) with the help of the
public encryption function ex and a comparison with m.

Efficiency of RSA
In order for a PKCS to be useful, we need that K € KC and that the functions ex and
dy are efficiently computable. For the computation of K, we need that RSA moduli
N = pq can be efficiently computed, i.e., that one can efficiently select prime factors p
and ¢. For this topic, we refer to the common textbooks on cryptography (see [50, 65]).
Instead, we want to show that ex and dx can be computed efficiently.

Hence, we have to show that raising a message m to the e® power modulo N can
be done in time polynomial in log N. The following algorithm is known as the Repeated
Squaring Method and computes the term m® mod N in time (’)(logelog2 N). Here we

write an n-bit exponent e = ?;01 ;2" in form of its binary representation e,_; ... eo.

fAIgorithm Repeated Squaring Method\

INPUT: m,N,e=ep_1...€
1. Set z := 1.

2. Fori=0ton—1

a) If (e, =1) set z:=z-mmod N.
b) If (i < n—1) set m := m? mod N.

\OUTPUT: z=mfmod N /

15
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BEach multiplication and squaring modulo N takes time O(log®? N). The number of
squarings is n — 1 = |log e] and the number of multiplications is identical to the number
of ones in the binary representation of e.

Therefore for efficiency reasons, one often uses RSA with public exponent e = 3 and
e = 21 4 1: The choice e = 3 requires 1 squaring and 2 multiplications, whereas the
choice e = 216 4 1 requires 16 squarings and 2 multiplications.

Analogous to e, the decryption function dx can be computed in time O(log d log? N).
However, in situations were decryptions/signatures are computed more often than en-
cryptions, it would be preferable to use small decryption exponents d in order to speed
up the decryption/signature computation. In another reasonable scenario, the encryp-
tions might be done by a fast computing device (e.g. a server), whereas the decryp-
tions/signatures are computed by a slow device (for instance a smart-card). Then, it
would be preferable to shift some load to the fast device by choosing a small d with
corresponding large e.

However in 1990, Wiener [71] showed that a secret key d < %N T yields the factor-
ization of N in polynomial time (see also Chapter 4). Therefore, one cannot use small
values of d directly.

In 1982, Quisquater and Couvreur [55] suggested an alternative fast decryption al-
gorithm for RSA. Their trick is to compute m? modulo p and ¢ separately and then to
combine both results using the Chinese Remainder Theorem to the value m? mod N.
Since the group order of Z, is p — 1, we know that m¢ = m? ™=l ;mod p. There-
fore, it suffices to use the value d,, := d mod p — 1 in the exponent (and symmetrically
dqy := dmod g — 1 for the computation modulo g).

f Quisquater-Couvreur Method \

INPUT: m,N,p,q,dy, :=dmodp—1,d, :=dmodg—1
1. Compute m% mod p with the Repeated Squaring Method.

2. Compute m% mod ¢ with the Repeated Squaring Method.

3. Compute m? mod N by Chinese Remaindering.

\OUTPUT: m® mod N /

Let us compare the Quisquater-Couvreur approach with the Repeated Squaring Method
that computes m? mod N directly. Here we assume that p and ¢ are of the same bit-
size, which is the normal case in RSA. For the computation m® mod p, the modulus
p has roughly half of the bits of N. Since multiplications and squarings can be done
in quadratic time, they can be performed modulo p four times faster than modulo N.

16
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Additionally, d, has roughly half of the bits of d. Hence, the computation of m% mod p
is about eight times faster than the computation of m¢ mod N. Similarly, we can argue
for the computation of m% mod g. The running time for the Chinese Remainder step
can be neglected. Hence, the Quisquater-Couvreur method is about four times faster
than normal repeated squaring.

Furthermore for the Quisquater-Couvreur method, d can be chosen in Z} ., such
that both values d, and d, are small. This speeds up the method even further. There-
fore, small values of d, and d, are often used in practice. There is no polynomial time
attack known if d, and d; are both small and the prime factors p and ¢ have the same
bit-size. However, we will present an attack for unbalanced prime factors in Chapter 5.

“We can factor the number 15 with quantum computers. We
can also factor the number 15 with a dog trained to bark three
times”.

Robert Harley, Sci.crypt.

“The obvious mathematical breakthrough would be the develop-
ment of an easy way to factor large prime numbers.”
Bill Gates, The Road Ahead, p.265

Security of RSA:
The security of RSA is based on the assumption that one cannot invert the encryption
function ex(m) = m® mod N in time polynomial in log N. That means, the security
of RSA relies on the difficulty of taking e roots modulo some number N of unknown
factorization. The hope is that ex is a so-called one-way permutation. Let us define
one-way permutations via one-way functions. Informally speaking, one-way functions
are functions that are easy to compute but computationally infeasible to invert. Then
a one-way permutation is a bijective one-way function from a set X to itself. There are
many candidates for one-way functions proposed in the literature, but no function has
been proven to be one-way.

An obvious way to invert ex (m) is to compute the Euler totient function ¢(N): From
¢(N), one can compute the secret d, which in turn determines dy. Notice that

= N—g-(-D=@-D-D.

Thus, if we knew the factors p and ¢, we could decrypt every message. In other words:
The knowledge of the factorization of N yields ¢(N) in polynomial time. Therefore, ex
is also called a candidate trapdoor one-way permutation. We assume that inverting ey is
computationally infeasible but with the knowledge of the trapdoor, i.e., the knowledge
of the factorization of NV, the inversion is easy.
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The converse reduction is also true: The knowledge of ¢(N) yields the factorization
of N. Suppose we know ¢(N) and N, then we have the following system of two equations

(p—1(@—-1) = ¢(N)
Pq N

We can easily solve this system of equations in the unknown parameters p and g. Thus
the problem of determining ¢(N) and the problem of factoring N are polynomial time
equivalent, i.e., a polynomial time algorithm for the first problem implies a polynomial
time algorithm for the second problem and vice versa.

Up to now, there is no known algorithm that computes the factorization of N in time
polynomial in the bit-size of N. The best algorithm which is due to Lenstra, Lenstra
and Manasse and Pollard [45] is called the Number Field Sieve and has an asymptotical
running time of

0 <e(1.92+0(1))(1n M3 (nin V) 3 ) .

It is worth noticing that for quantum computers, Shor [61] presented a polynomial time
algorithm for factoring N. Unfortunately (or fortunately for cryptographers!), one does
not know how to build quantum computers with sufficiently many quantum bits in
practice.

It is often stated in the literature that RSA is based on the factorization problem.
This means that if factoring can be done in polynomial time then inverting the RSA
encryption function ex can also be done in polynomial time. However, the converse is
not known: One does not know whether computing e’ roots modulo N is polynomial
time equivalent to the factorization problem.

In 1996, Boneh and Venkatesan [17] posed some doubt whether there is a polynomial
time equivalence between these problems. Namely, they showed that under so-called

th roots can

algebraic reductions every algorithm that factors N by using an oracle for e
be turned into an algorithm that does not need such an e**-root oracle. Thus, the oracle
does not seem to help in factoring N. The conclusion is that factoring may be harder
than inverting the RSA encryption function. But at the moment one does not know how
to invert RSA encryptions without knowing the factorization of N.

However, despite intensive research in the last 25 years from a mathematical point
of view one does not know a more efficient way to break the RSA scheme than factoring
the modulus N. Although many other attacks on RSA — which include different forms
of side-channel attacks — were proposed, these approaches do not attack RSA itself but
physical implementations of the RSA scheme. For instance in fault attacks, one tries to
induce faults during the signature computation on the computing unit (computer, smart
card, etc.). The idea behind all side channel attacks is: Since the secret key is used
in the decryption/signature process, one can learn some secret information by studying
the decryption/signature generation. We will give an example of a side-channel attack
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where an attacker learns bits of d in Section 6.1.

Let us define the following transitive relation: A = B means that if there exists a
(probabilistic) polynomial time algorithm for A, then there also exists a polynomial
time algorithm for B. Up to now we have the situation

Taking e roots modulo N <« Factoring N < Computing ¢(N) = Computing d
The following theorem proves that also
Computing d = Factoring N.

That means we reduce the problem of factoring N in probabilistic polynomial time to
the problem of determining the secret key d. However, this does not imply that taking
e" roots modulo N is equivalent to factoring, since there might be a way to take et
roots without knowing d.

We state the following theorem for moduli N = p”q for some constant r > 1, since
we will use the theorem in this form in Section 6.6. The special case r = 1 is the normal

RSA case.

Theorem 2 Let N = p"q with p, q prime and r > 1. Suppose we are given positive
integers e,d > 1 satisfying
ed =1 mod ¢(N).

Then the factorization of N can be found in probabilistic polynomial time.

Proof: A complete proof of Theorem 2 for the special case r = 1 can be found in the
book of Stinson [65]. A generalization to arbitrary r is straight-forward. Here, we only
want to outline the idea of the proof.

Let ed = 2t for some odd ¢t € N. Furthermore, let us randomly choose some m € Zy.
We know that m2"t = 1 mod N. Therefore, m2 s a square-root of 1 modulo N. But
there are four different square roots of 1 modulo N that correspond to the solutions of
the congruences

x 1 mod p"

QNI N

x> = 1modg

The four solutions are (zp,x,) = (£1,+£1). The solutions (1,1),(—1, —1) correspond to
the two square roots 1,—1 of 1 modulo N, respectively. However, the square roots cor-
responding to the solutions (1,—1) and (—1,1) give us the factorization of N: Consider
for instance an integer b corresponding to (1, —1). Then

b—1 = 0 modp” and
b—1 = —2 modg.

Therefore, we have ged(N,b—1) = p" which gives us p. Alternatively, we could compute
ged(N,b+1) =q.
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Hence, if m2" # +1 mod N, then a greatest common divisor computation yields
the factorization of N. If m2* 't = 1 mod N then we can look at the next square root
m2 ™t = 1 mod N , and so on. This approach will only fail if one of the square roots
is —1 or if the last square root m! mod N is still 1. A careful analysis shows that this
case happens with probability at most % where the probability is taken over the random

choices of m.

It is worth noticing that the hardness of inverting the RSA encryption function eg
is not sufficient at all to make RSA a cryptographically secure system. For instance,
this does not exclude that it might be easy for an attacker to learn from ex (M) certain
parts of the underlying message m. A convenient security requirement for public key
cryptosystems is the notion of semantic security. Informally this means that an adversary
is unable to distinguish between an encryption of a given plaintext and a random string.

The RSA cryptosystem as described in this chapter is not semantically secure, since
the scheme is deterministic, i.e., each plaintext m has exactly one ciphertext ey (m).
Furthermore, every encryption leaks the Jacobi symbol of the underlying message. How-
ever, Bellare and Rogaway [2] proposed a method called Optimal Asymmetric Encryption
Padding (OAEP) that can be used in order to turn RSA into a semantically secure PKCS
in the so-called Random Oracle Model, provided that ek is a one-way permutation ([31],
see also [10, 62]).

We do not consider semantically secure versions of RSA in this thesis, since in the
subsequent chapters we will study only attacks that completely break the RSA system for
keys K € K of a special form. In these cases, ek is not a trapdoor one-way permutation
since the factorization of N can be found in polynomial time.

Parameter choices in RSA and useful estimates
Here, we will make a few conventions about the parameters of RSA. If not explicitly
stated otherwise, we will always assume that N is a product of two different prime
numbers p and ¢, which are of the same bit-size. This is a reasonable assumption, since
for the fastest known special purpose factorization algorithm, the Elliptic Curve Method
due to Lenstra [43], the running time on input N depends on the minimum of p and q.
Therefore, choosing p and q of the same bit-size is a worst-case scenario for the Elliptic
Curve Method.

Furthermore, we will assume without loss of generality that p > ¢. With our as-
sumptions so far, we can conclude that

q<\/N<p<2q<2\/N.

This gives us an easy estimate for the term p + ¢ which will be frequently used in the
subsequent chapters

p+q<3VN. (2.1)
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Sometimes, we will need a tighter approximation of p + ¢. Let p = ¢V N and g = %\/N
for some ¢ > 1. It is not hard to see that p+ ¢ is maximal for ¢ as large as possible. But
g < 2 implies that ¢ < v/2. Therefore, we get the more refined bound

3
p+q< E\/N. (2.2)

In order to lower bound the value p + ¢, we observe that p+ ¢ > p > vV N. We obtain
a better bound if we use the same reasoning as before: Let p = ¢V N and ¢ = %\/N for
some ¢ > 1. The sum p + ¢ is minimal for ¢ as small as possible. Thus, we obtain

p+q>2VN.

Since p and ¢ are of the same bit-size and ¢ < vV N < p, the value v N must be of the
same bit-size as p and ¢. Thus
pP—q<VN.

If not stated otherwise, we will always assume that e € Z’;( ny Which implies e < d(N).
Furthermore, we will use the inequality

%N < ¢(N) < N.

2.2 Preliminaries on lattices

“God made the integers, all else is the work of man.”

Leopold Kronecker (1823-1891)

In the following, we state a few basic facts about lattices and lattice basis reduction
and refer to the textbooks [22, 33, 46, 58| for a thorough introduction into the theory of
lattices. In this thesis, we only use lattices that are defined over the integers but all of
our definitions in this section are also valid for the real numbers.

Let vy,...,v, € Z™, m > n be linearly independent vectors. A lattice L spanned by
{v1,...,v,} is the set of all integer linear combinations of vy,...,v,
n
L= {veZm ‘ v:ZaiviwithaieZ}.
i=1
If m = n, the lattice is called a full rank lattice. The set of vectors B = {vy,...,v,} is

called a basis for L. We also say that L is spanned by the vectors of the basis B. We
call dim(L) := n the dimension of L. For an example of a two-dimensional lattice with
basis B = {(0,2),(1,1)}, see Figure 2.1.
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0.2
(1

Figure 2.1: Lattice with basis B = {(0,2),(1,1)}

By v7,...,v;, we denote the vectors obtained by applying Gram-Schmidt orthogona-
lization to the basis vectors. The determinant of L is defined as

det(L) := [T o7l
i=1

where |v| denotes the Euclidean norm of v. Any lattice L has infinitely many bases but
all bases have the same determinant. If a lattice is full rank, det(L) is the absolute value
of the determinant of the (n x m)-matrix whose rows are the basis vectors vy, ..., vy,.

Hence if a basis matrix is triangular, the determinant can easily be computed by
multiplying the entries on the diagonal of the basis matrix. In the subsequent sections,
we will mostly deal with triangular basis matrices. In Chapter 7, we will introduce non-
triangular bases but we will reduce the determinant computations for these bases also
to the case of triangular bases.

A well-known result by Minkowski [51] relates the determinant of a lattice L to the
length of a shortest vector in L.

Theorem 3 (Minkowski) FEvery n-dimensional lattice L contains a non-zero vector v

with [v] < v/ndet(L)n.

Unfortunately, the proof of this theorem is non-constructive.

In dimension 2, the Gauss reduction algorithm finds a shortest vector of a lattice
(see for instance [58]). In arbitrary dimension, we can use the famous L*-reduction
algorithm of Lenstra, Lenstra and Lovész [44] to approximate a shortest vector. We
prove an upper bound for each vector in an L3-reduced lattice basis in the following
theorem. The bounds for the three shortest vectors in an L3-reduced basis will be
frequently used in the following chapters.
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Theorem 4 (Lenstra, Lenstra, Lovasz) Let L € 7" be a lattice spanned by B =
{b1,...,by}. The L3-algorithm outputs a reduced lattice basis {v1,...,v,} with

_n(n—1) 1 ]
|vi| < 230=FD det(L)»—+1  fori=1,...,n
in time polynomial in n and in the bit-size of the entries of the basis matriz B.

Proof: Lenstra, Lenstra and Lovasz [44] showed that the L3-algorithm outputs a basis
{v1,...,v,} satisfying

Joil <27 o} forl<i<j<mn.

For a vector v;, we apply this inequality once for each j, i < j <n, which yields

n

ol < T1 27 151, (2:3)

Since L € Z", we know that |v}| = |v1| > 1. For an L3-reduced basis, we have
Aot [2 > iy P for1<j<n (see [4d]).
Therefore, we obtain
2’z Hv | >vi|>1 forl1<j<n.
We apply the last inequality in order to bound

n

H2 51 H o

(L)-

Using this inequality together with inequality (2.3) proves the theorem.
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3 Coppersmith’s method

FEvery integer that is sufficiently small
i absolute value, must be zero.

3.1 Introduction

In 1996, Coppersmith [18, 19, 20, 21] introduced a method for finding small roots of
modular polynomial equations using the L3-algorithm. Since then, the method has
found many different applications in the area of public key cryptography. Interestingly,
besides many results in cryptanalysis [3, 13, 14, 16, 20, 28] it has also been used in the
design of provably secure cryptosystems [62].

We will present Coppersmith’s method in this chapter. Nearly all the results in the
subsequent chapters will be based on Coppersmith’s method. In fact, one can view our
new results as different applications of the method. Since all of our applications belong to
the field of cryptanalytic attacks on the RSA cryptosystem, we will first give an informal
example that explains the significance of a modular root finding method in the area of
public key cryptanalysis and here especially for RSA.

In public key cryptosystems, we have a public key/secret key pair. For instance in
the RSA scheme, the public key is the tuple (N, e) and the secret key is d. The public
key /secret key pair satisfies

ed =1+ k¢(N), where k € N.

We see that in the RSA scheme, the public key pair (N, e) satisfies a relation with the
unknown parameters d, k and ¢(N) = N — (p+ ¢ — 1). Hence, we can assign the
unknown values d, k and p+ ¢ — 1 the variables z, y and z, respectively. Then we obtain
a polynomial

f(z,y,2z) =ex —y(N —z)—1

with the root (zo,vo,20) = (d,k,p + ¢ — 1) over the integers. Suppose we could find
the root (zg, 40, 20). Then we could solve the following system of two equations in the
unknowns p and q
ptag—1 = =
pg = N
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Substituting ¢ = % in the first equation gives us the quadratic equation p? — (2o 4+ 1)p +
N = 0 which has the two solutions p and q.

Hence, finding the root (zg, yo, 20) is polynomial time equivalent to the factorization
of N. Unfortunately, we do not know how to find such a root and since we assume that
factoring is hard, we cannot hope to find an efficient method for extracting (xo, yo, z0) in
general. However, the inability of finding a general solution does not imply that there are
no roots (g, Yo, 20) of a special form for which we can solve the problem in polynomial
time in the bit-length of N. This special form is the point where Coppersmith’s method
comes into the play.

Suppose we had a general method how to find small roots of modular polynomial
equations, where small means that every component of the root is small compared to
the modulus. Could we then discover the unknown solution (zg,yo, 20) of the equation
f(x,y,z) = 07 The obvious problem with this approach is:

The equation f(z,y,z) = 0 is not a modular polynomial equation but an equation
over the integers.

It is easy to come around with this problem: Simply choose one of the known param-
eters in f(z,y,2) as the modulus, e.g., we could choose either N or e. Then we obtain
the following modular polynomial equations, respectively:

fu(a,yz) = ex+yz—1 and fu(y,2) = y(N —2) + 1.

We see that in fy we can treat yz as a new variable. So in fact, both polynomials are
bivariate polynomials. The polynomial fy has the root (d,k(p + ¢ — 1)) modulo N,
whereas the polynomial f. has the root (k,p + ¢ — 1) modulo e. Now the requirement
that the roots of fy and f. should be small compared to the modulus makes sense.
Notice that we have introduced a notation, which we will keep throughout this thesis:
The subscript N of the polynomial fn denotes that fy is evaluated modulo N.
In order to bound the parameter k we observe that

ed—1 e
k= <
O(N) ~ ¢(N)
Hence, if we choose d to be a small secret value then k is automatically small. Since
the running time of RSA decryption with the Repeated Squaring Method of Section 2.1
is O(logd - log? N ), small values of d speed up the RSA decryption/signature process.
Therefore, it is tempting to use small values of d for efficiency reasons.

d<d.

But small choices of d lead to the two most farlnous attacks on RSA up to now:
Wiener [71] showed in 1990 that values of d < 1N1 yield the factorization of N. In

1
1999, Boneh and Durfee [12] improved this result to d < N'TVE a NO-292, Interestingly,
both methods can be seen as an application of Coppersmith’s method:
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e Wiener’s method corresponds to an application of Coppersmith’s method using
the polynomial fy(z,yz). Originally, Wiener presented his results in terms of
continued fractions. We show in Section 4.2 how an application of Coppersmith’s
method using the polynomial fy leads to a two-dimensional lattice L. The shortest
vectlor in L then yields the factorization of N, whenever the Wiener-bound d <
$INi holds.

e The attack on RSA with small secret exponent d due to Boneh-Durfee makes use
of the polynomial f.(y, z) in combination with Coppersmith’s method. This leads
to the improved bound of d < N0-292,

In this thesis, we study further applications of Coppersmith’s method. All these appli-
cations have the property that d is not small itself but satisfies a relation with small
unknown parameters:

e A generalization of Wiener’s attack: We present a new method that works if d has
a decomposition d = g—; mod ¢(N) into small dy, dy. As an application of this new
approach, we cryptanalyze an RSA-type scheme presented in 2001 [73, 74].

e Attacks on unbalanced RSA with small CRT-exponent: Here d has a Chinese
Remainder Theorem decomposition d = (dp,d,), where d,, = d mod p — 1 is small.
This CRT-property of d is of important practical significance, since one can use
small values of d,, d, in order to speed up the fast Quisquater-Couvreur variant
of RSA decryption (see Section 2.1). We show that the factorization of N can be
found whenever the prime factor p is sufficiently large.

e Partial key exposure attacks on RSA: We present attacks on RSA when parts of
the secret key d are known. For instance suppose that an attacker knows a value
d that corresponds to the k least significant bits of d, e.g. d = - 2¥ + d for some
unknown x. The more bits we know, the smaller is the value of the unknown x.
Thus, one can hope to recover x using Coppersmith’s method whenever sufficiently
many bits of d are known.

For the rest of this chapter, we present Coppersmith’s method. Therefore, we re-
view in Section 6 Coppersmith’s method in the case of univariate modular polynomial
equations. In the univariate case, Coppersmith’s method provably outputs every root
that is sufficiently small in absolute value. As an important application of the univariate
case, we show a result that was also presented in Coppersmith’s work in 1996 [18]: The
knowledge of half of the most significant bits of p suffice to find the factorization of an
RSA-modulus N = pq in polynomial time. Originally, Coppersmith used a bivariate
polynomial equation to show this result. However as we will see, the univariate modular
approach already suffices.
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In Section 3.4, we present Coppersmith’s extensions to the multivariate polynomial
case. The main drawback of the generalization to the multivariate case is that the
method is no longer rigorous. It depends on some (reasonable) heuristic.

3.2 The univariate case

“Fverything should be made as simple as possible,
but not simpler.”
Albert Einstein (1879-1955)

Let us first introduce some helpful notations. Let f(z) := Y. a;z' be a univariate
polynomial with coefficients a; € Z. We will often use the short-hand notation f for
f(x). All terms a2 with non-zero coefficients are called monomials. The degree of f
is defined as max{i | a; # 0}. Let f be a polynomial of degree i, then we call a; the
leading coefficient of f. A polynomial is called monic if its leading coefficient is 1. The
coefficient vector of f is defined by the vector of the coefficients a;. We define the norm
of f as the Euclidean norm of the coefficient vector: |f|? := Y, a?. The definitions for
multivariate polynomials are analogous.

In this section, we study the following problem:

Let N be a composite number of unknown factorization and b be a divisor of N,
where b > NP for some known (3. Notice that b must not be a prime. Given an
univariate polynomial f(z) € Z[X] of degree 6. Find in time polynomial in § and
in the bit-size of N all roots xy € Z of f,(x) modulo b, where || < X for some X.
The goal is to choose the upper bound X for the size of the roots zg as large as
possible.

First, we consider one important special case of the problem above: The case, where
b= N. We want to point out that this is the case that was studied by Coppersmith in
his original work [20]. However, we think it is convenient to formulate Coppersmith’s
method in a more general framework, since in this more general form we can easily derive
important applications of Coppersmith’s method in the following sections as simple
implications of the results of the problem above. For instance, some results in the
literature — e.g. the factorization algorithm for moduli N = p"q with large r due to
Boneh, Durfee and Howgrave-Graham [16] — use Coppersmith’s method but do not
fit in the original formulation of the problem. To our knowledge, the new formulation
covers all approaches mentioned in the literature.

Nevertheless, let us first give some motivation for the importance of the case b = N.
We do not know how to solve modular polynomial equations, when the factorization of
the modulus N is unknown. Notice that the problem of decrypting an RSA-encrypted
message ¢ = m® mod N is the problem of finding the unique positive root zop = m < N
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of the polynomial
fn(x) = 2° — ¢cmod N.

Under the assumption that inverting the RSA-function is hard, we cannot solve this
problem in general. If we knew the factors p and ¢, we could find the roots of fy(x)
modulo p and modulo ¢. Using the Chinese Remainder Theorem, we could then combine
both solutions and recover x modulo N.

But if we cannot solve the problem for all m € Zy, then it might be feasible for
especially small values of m. Indeed, it is a Well—knolwn protocol failure of RSA that one
can recover m in polynomial time whenever m < Ne. The reason why this attack works
is simple: Since m® < N, we have

mé—c=0 over Z

and not just modulo N. Thus, we can simply take the e’ root of ¢ in order to recover
the value of m. Notice that this attack can easily be avoided by padding each message
m with additional bits such that m becomes sufficiently large.

However, the attack above already yields a simple idea how to solve modular uni-
variate polynomial equations:

Reduce the root finding problem in modular equations to the case of root finding
in equations over the integers.

Thus, the idea is to construct from the polynomial fj(z) with the root zyp < X
modulo b a polynomial f(x) which has the same root xg over the integers. Then we can
easily find the root zy by applying standard root finding algorithms to f(z) (take for
instance the Sturm sequence, see [39]).

But how can we transform f,(z) into f(z)? This transformation is exactly the core
of Coppersmith’s method. In the following, we describe Coppersmith’s reduction of the
modular root finding case to root finding case over the integers.

Reduction of the modular to the integer case
Recall that we start with the knowledge of the following values:

Known parameters: — the modulus N of unknown factorization with divisor b
— the lower bound N” with b > N#

— the polynomial fj,(z) with f;(x0) = 0 mod b for some |zg| < X

Unknown parameters: the root xg

— the modulus b.
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In order to construct f(z), we fix an integer m and construct a set G of univariate
polynomials where each polynomial g(z) € G satisfies

g(xo) = 0 mod b™.

Since we do not know the values of xy and b, we can only use the parameters fj,(z) and
N in order to construct the set G. This means that we can choose polynomials of the
form

gij(x) = N™ ‘2l f{(x) fori=1,...,m and some choice of j.

Notice that for each choice of 4, j we have g; j(xg) = 0 mod b™ since fi(xo) = 0 mod b’
and N™ " is a multiple of ™.

But then every integer linear combination

f@)=> aijgi5(x), ;€T (3.1)
i,J

of polynomials in G also has the root xg modulo ™. Our goal is to find among these
linear combinations one which has the root xg not just modulo ™ but also over the
integers. But which property does the above linear combination f(x) of polynomials in
G need to satisfy in this case? The most simple idea is to choose the coefficients a; ;
such that f(z) satisfies the relation

[/ (xo)| <™.

Since we know that f(zp) = 0 mod b™ and f(z¢) € Z, we can conclude that f(xg) =0
over the integers. In other words we use the following basic principle that underlies
Coppersmith’s method:

Every integer multiple of b™ that is small enough must be zero!

However, there remain two serious problems with the approach so far:
1. How can we find the coefficients q; ; efficiently?

2. How can we check that the relation |f(zg)| < b™ is satisfied if we do not know the
values of zg and b7

Let us first address the second problem. Observe that instead of zg and b we know bounds
X, N7 satisfying |zo| < X and b > NB. Thus, instead of checking if a polynomial fx)
is smaller than b™ at the point x(, we could check whether the condition |f(X)| < N#™
holds. In other words: We check if f evaluated at a larger point gives some smaller
value. But still this approach makes some problems: Let f(x) := Z:‘L;ol cixt, ¢; € 7. We
could be in the case, where we have |f(X)| < N and still | f(zo)| > ™. The reason
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for that is that the coefficients ¢; may be negative. Some terms in f(X) may cancel out
where in f(x) they lead to a large value.

Hence, we cannot evaluate f(x) at the point X directly but we first have to force
all coefficients ¢; of f(x) to be non-negative by taking the absolute values. Using the
triangle inequality, we obtain the following inequalities:

n—1 n—1
[f(@o)] < el <D el X
i=0 i=0

If we could satisfy the inequality Z?:_()l lei| X < NP™ this would automatically imply
the desired condition |f(zo)| < N™ < b™. We observe that the polynomial

I
—

f@X)=) c(zX)

i

Il
o

has the coefficient vector (o X%, c1 X!, ..., ¢c,m1 X" 1). Thus, the term 2?2_01 i X is
the ¢1-norm of the coefficient vector of f(xX) and thus by our definition of the norm of
a polynomial |f(zX)|, = Z?:_()l le;| X?. Therefore, our polynomial f(x) has to satisfy
the condition |f(zX)|s, < b™. Since by switching to the Euclidean norm, we loose at
most a factor of v/n, we could also use the condition /n - | f(zX)] < b™.

The last condition will be used in the following theorem. We want to point out that
Coppersmith originally did not formulate this condition in terms of polynomial arith-
metic. This convenient and very useful formulation is due to Howgrave-Graham [35] who
revisited Coppersmith’s method. Therefore, the following theorem is due to Howgrave-
Graham although it resembles Coppersmith’s original idea. We think that the different
point of view on Coppersmith’s method due to Howgrave-Graham was one of the reasons
that Coppersmith’s method has found so many applications in cryptography. Therefore
throughout the thesis, we always refer to Howgrave-Graham’s theorem by keeping in
mind that it is a reformulation of Coppersmith’s underlying idea.

Theorem 5 (Howgrave-Graham) Let f(x) be an univariate polynomial with n mono-
mials. Further, let m be a positive integer. Suppose that

(1) f(xo) = 0mod b™ where |xg| < X
) 1f@X)] < B

Then f(xzo) = 0 holds over the integers.
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Proof: We have
[flxo)l = ) ciah <D |ei)
< ) el X<Vl faX)] < bm.

But f(z¢) is a multiple of " and therefore it must be zero.

Up to this point, we only derived conditions under which a polynomial f(z) has a root

xo, |To] < X over the integers. Now, we want to show how to construct such a poly-
nomial f(z). Remember from equation (3.1) that every f(z) which is an integer linear
combination

f(z) = Z a;,59i,5(x)

of the polynomials g; ; € G satisfies condition (1) of Howgrave-Graham’s theorem, since
every g; ; satisfies condition (1). Therefore, we have to search among all integer linear
combinations for a polynomial f(z) which also satisfies the second condition of Theo-
rem 5. In other words, we have to search among all integer linear combinations of the
coefficient vectors g; j(xX) for one vector with Euclidean norm smaller than b—\/n%. But
this means:

Find in the lattice L that is spanned by the coefficient vectors of g; ;(zX) a vector

with Euclidean norm smaller than 2~.
Jn

Our goal is to ensure that the L3-algorithm finds a vector v with |v| < b—\;% in L.

Then we could apply the L3-algorithm to the basis spanned by the coefficient vectors of
gi,j(xX) and find a sufficiently small vector. Notice that by Theorem 4, the norm of a
shortest vector v in an L3-reduced integer basis can by related to the determinant of the
corresponding lattice L with dimension n by

o] < 2% det(L).
Thus if we could satisfy the inequality

NBm

vn

then we have the desired inequality |v]| < N—\/ﬁﬁm < I\’/—Z, which guarantees that the short-

27 det(L)n < (3.2)

est vector of an L3-reduced basis is sufficiently short to satisfy the second condition in
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Theorem 5. Notice that inequality (3.2) gives us a very useful condition, since we can
compute from the coefficient vectors of g; j(xX) the determinant of L.

Furthermore, we observe that det(L) depends on the values of N and X, since the
gi,; depend on these parameters. Thus, inequality (3.2) gives us a restriction on the size
of X which can be used in Coppersmith’s method. Remember that X is an upper bound
for the size of the roots xy that can be found.

In our application of Coppersmith’s method, we will often be in the case where N
is very large (e.g. in the order of 2!90)  whereas the lattice dimension n is negligible
compared to N (in the order of 100). Therefore, we can often neglect the terms that
depend only on n, which simplifies condition (3.2) to the elegant form

det(L) < NP™, (3.3)

Since we want to maximize the size of X, we have to choose the g; ; such that det(L)
is as small as possible. We can give an even more quantitative statement which g; ; are
helpful in order to optimize the size of X:

Suppose we have a basis that satisfies inequality (3.3). Assume we assign a new
coefficient vector of some g; j(zX) to the basis. This increases the lattice dimension n
by 1, which in turn increases the right-hand side of inequality (3.3) by a factor of N/™.
Hence, if the contribution of the new vector to the determinant is at most a factor of
NP™_ then inequality (3.3) still holds. Moreover, if the contribution to det(L) is signifi-
cantly less than N, then we can slightly increase det(L) and the condition (3.3) will
still be valid. But the ability to increase the determinant means that we can increase
the value of X. Hence:

Every basis vector that contributes to det(L) with a factor smaller than N°™ is
helpful !

This criterion will be used throughout the thesis in order to optimize the choices
of basis vectors. Normally, we will use lattice bases whose bases matrices are in lower
triangular form. In this case, the criterion means that every basis vector with diagonal
entry smaller than N®™ is helpful, but the criterion also holds for non-triangular bases.

Let us briefly summarize Coppersmith’s method for the univariate case in some
informal way. We will later specify the values of the parameters that are used here.
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/ Coppersmith Method in the univariate case (informally) \

INPUT: — Polynomial f(z) of degree §

— Modulus N of unknown factorization which is a multiple of b and a
lower bound b > NP

Step 1: Fix an integer m (depending on N,  and ¢§) and construct a set G of
univariate polynomials, where each g;(x) € G satisfies

g(x) = 0mod b"™.

Step 2: Construct the lattice L from the polynomials g;(z) € G: The basis vectors
of L are the coefficient vectors of g;(xX), where X is chosen such that the
L3-algorithm finds a vector with norm smaller than dnl;—"(LL) in L. The size of
X is a function of the parameters N, 4 and 9.

Step 3: Apply the L3-algorithm to the lattice bases. Let v be the shortest vector in
the L3-reduced bases. The vector v is the coefficient vector of some polynomial

f(xX). Construct f(x) from v.

OUTPUT: Polynomial f(z) with f(zo) = 0 over Z whenever fy(xg) = 0mod b
and |zo| < X

- /

Notice that every step can be done in time polynomial in the input size.

We can find all roots of f(z) in Z by a standard root finding algorithm. We want
to point out that f(x) may have more roots in Z than fy(z) modulo b. However, the
number of roots is bounded by the degree of f(x) and the desired roots of fy(x) with
|zo| < X must be among the roots of f(z).

Coppersmith’s Theorem

Now, we will apply Coppersmith’s method on arbitrary univariate, monic polynomials
fv(z) of degree §. Normally, the property that fi,(z) is monic is no restriction in practice.
Assume that fi(x) has a leading coefficient as # 1, then one could compute the inverse
agl of ag modulo N. Since N is a multiple of b, the value agl will also be an inverse of
a; modulo b and we can make f,(z) monic by multiplying with this inverse. The only
problem that might occur is the case when as and the modulus N share a non-trivial
greatest common divisor, since then a5_1 does not exist. However, if we assume that N
is hard to factor (which will always be the case in our applications), then either this case
does not occur or we have found a non-trivial factor of N.

The following theorem of Coppersmith states that for a monic polynomial fj(z) of
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. 82 . e
degree ¢, all roots xo with |zg] < N can be found in polynomial time.

Theorem 6 (Coppersmith) Let N be an integer of unknown factorization, which has
a divisor b > NB. Furthermore, let fy(x) be an univariate, monic polynomial of degree
5. Then we can find all solutions x for the equation fi(x) = 0 mod b with

152
< =Ny ~€
2ol < 5
in time polynomial in (log N, 0, %)

82 . .
Proof: Define X := %N 5 ¢, Now, we successively apply the steps of Coppersmith’s
method. In the first step, we fix an integer m such that

mZmax{g—:,?} (3.4)

Notice that for € < % (G this implies that we can use the value

2]

Next, we choose a set G of polynomials, where each polynomial has a root xg modulo o™
whenever f;(x) has the root xyp modulo b. In our case, we include in G the polynomials

N™ TN™ z2N™ .. x®TINT
Nm—lf me—lf CEQNm_lf x&—le—lf
Nm72f2 mef2f2 1.2Nm72f2 o x571Nm72f2
me—l ;,Cme—l ;,CQme—l .xé—lem—l.

Additionally, we take the polynomials
fm CCfm fom xt—lfm

for some ¢ that has to be optimized as a function of m.

Note that by our ordering the & polynomial of G is a polynomial of degree k. Thus,
it introduces the new monomial zF. We could also write the choice of our polynomials
in G in a more compact form. Namely, we have chosen the polynomials

gij(x) = 2INfmi(x) for i=0,....m—1, 7=0,...,6 — 1 and
hi(x) = z'fm™(x) for i=0,...,t—1.
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In Step 2 of Coppersmith’s method, we construct the lattice L that is spanned by the
coefficient vectors of g; j(zX) and h;j(zX). As we noticed before, we can order the
polynomials g; ; and h; in strictly increasing order of their degrees k, i.e., each polynomial
introduces exactly one new monomial z*. Therefore, the basis B of L, that has as row
vectors the coefficient vectors of g; j(zX) and h;(xX), has the property that it can be
written as a lower triangular matrix. Let n := dm + ¢, then we write B as the following
(n x n)-matrix!':

N™
N™X

N™m xo—1

xOom+1

XJWL+t—1

Note that we can easily compute the determinant of L since B is in lower triangular
form. Therefore, det(L) is simply the product of all entries on the diagonal:

det(L) = N2°m(m+1) xgn(n=1) (3.5)

Now we want to optimize the parameter ¢, which is equivalent to the optimization of
n = dm+t. Remember that in the discussion for Coppersmith’s method, we argued that
every vector which contributes to the determinant by a factor less than 6" is helpful. In
our setting this means that we have to ensure that the entries of the coefficient vectors
hi(zX) on the diagonal are all less than b™, i.e., we have the condition

Xt <pm,
2 2
Since X" ! < N(%_E)("_l) < NBT" and b > NP this condition is satisfied for the choice

n < —=m.

R >

According to (3.4), we can choose m as the maximum of {g—:, %} (here we neglect

roundings). Then, we immediately have a bound for the lattice dimension

n:max{éﬁ},
€

Here we use the following notation: Every non-specified entry is zero. The entries marked with “”
may be non-zero, but the determinant of the lattice does not depend on their values
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which is polynomial in % Since the bit-size of the entries in B can be bounded by
(8 + m)log N < (6 +n)log N, the L3-algorithm operated on B in time polynomial in
log N, § and % Now, we want to prove that the L3-algorithm also finds a vector which
is sufficiently short.

In order to apply the theorem of Howgrave-Graham (Theorem 5), we have to ensure

that the L3-algorithm finds a vector in L with norm smaller than b—\/n%. Since the L3-
1
det

algorithm finds a vector v in an n-dimensional lattice with v < 27T (L)%7 we have

to satisfy the condition
m

n— b

Using the term for det(L) in (3.5) and the fact b > N”, we obtain the new condition

dm(m+1) n—1 n—1 1
Ton X 2 <92 1 p2aNPm,

This gives us a condition on the size of X:

1 1 28m _ dm(m+1)
X <2 ap wiNw-1 aten

__1 _logn 1 L. . .
Notice that n= »=1 =2 »-1T > 272 for n > 7. Therefore, our condition simplifies to
2B8m _ dm(m-+1)

X S %Nﬁ n(n—1)

2
NF—¢. Hence in order to finish the proof of

Remember that we made the choice X = %

the theorem, it suffices to show that

26m _ om*(L+3) _ p°

n—1 nh-1 ~— ¢

We obtain a lower bound for the left-hand side by multiplying with "T_l Then, we

substitute n = %m which gives us

This simplifies to

made in (3.4).
Let us briefly summarize the whole algorithm which finds all roots of f;(x) modulo
b that are in absolute value smaller than X.
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/ Coppersmith’s method in the univariate case \

INPUT: — Polynomial fj,(z) of degree §.

— Modulus N of unknown factorization which is a multiple of b and a
lower bound b > N7

Step 1: Choose the smallest integer m such that m > max {g—Q, %}

Compute t = {5m(% -1)].

Compute the polynomials

gij(x) = PN () for i=0,...,m—1, j=0,...,0 — 1 and
hi(z) = 2'f™(x) for i=0...t—1.

2
Step 2: Compute the bound X = [N %_51. Construct the lattice basis B, where
the basis vectors of B are the coefficient vectors of g; j(xX) and h;(zX).

Step 3: Apply the L3-algorithm to the lattice bases B. Let v be the shortest vec-
tor in the L3-reduced bases. The vector v is the coefficient vector of some
polynomial f(xzX). Construct f(z) from wv.

Step 4: Find the set R of all roots of f(z) over the integers. For every root xy € R
check whether ged(N, fy(z9)) > NP. If this condition is not satisfied then
remove g from R.

QUTPUT: Set R, where xg € R whenever f,(z¢) = 0 mod b for an |zg| < X. /

As we noticed before, all steps of the algorithm can be done in time polynomial in
log N, § and %, which concludes the proof of the theorem.

One should notice that the polynomial f(z) that we construct in Coppersmith’s
method may contain integer roots that are not roots of fy(x) modulo b. It is easy to
see that one could add an additional integer root a € Z to f(z) by multiplying with the
linear term (z — a). Therefore, we use in Step 4 of the algorithm in Theorem 6 a simple
test whether f,(xg) is really a divisor of N of size at least N°. In the case where b is
prime and 3 > %, b is the unique divisor of N with b > N&. Therefore in this case, the
set R of integer roots of f(z) contains exactly the roots of f,(z) modulo b. If 5 < %, R
may contain roots of f,(z) modulo some other divisor ¢ > N? of N. Since we do not
know b, we might have problems to identify the roots of f;(x) modulo b. However, for
all of our applications it will suffice to know only one small root of f;(x) modulo b and
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this property will be easily testable.

It is also worth noticing the following point: The approximation factor of 9"T" for the
shortest vector coming from the L3-algorithm is exponentially in the lattice dimension
n, but this factor essentially translates in the analysis of Theorem 6 to the term % for
the upper bound of the size of the roots xy. Thus, computing a shortest vector instead
of an L3-approximate version would only improve the bound by a factor of roughly 2
(i.e., only one bit).

Moreover, the following theorem is a direct implication of Theorem 6 and shows
how we can easily remove the terms % and e from the upper bound on xy by a simple
brute-force search.

Theorem 7 (Coppersmith) Let N be an integer of unknown factorization, which has
a divisorb > NB. Let fy(z) be an univariate, monic polynomial of degree 5. Furthermore,
let ¢y be a function that is upper-bounded by a polynomial in log N. Then we can find
all solutions xg for the equation fy(x) = 0 mod b with

2
|xo| < CNN%

in time polynomial in (log N, 0).

Proof: An application of Theorem 6 with the parameter choice ¢ = 1o§ ~ shows that
we can find all roots xy with

1 2
20| < ZN%

in time polynomial in log N and §.

: 8%, .
In order to find all roots that are of size at most ¢y /N ¢ in absolute value, we divide
2

3?2 8., . . 8%
the interval [—cyN &, ey N § | into 4en subintervals of size %N 5 centered at some ;.
For each subinterval with center x;, we apply the algorithm of Theorem 6 to the poly-
nomial fy(z — x;) and output the roots in this subinterval.

For completeness reasons and since it is one of the most interesting cases of Copper-
smith’s method, we explicitly state the special case b = N and ¢y = 1, which is given in
the work of Coppersmith [20].

Theorem 8 (Coppersmith) Let N be an integer of unknown factorization. Further-
more, let fn(xz) be an univariate, monic polynomial of degree 6. Then we can find all
solutions xq for the equation fn(x) =0 mod N with

ol < N

in time polynomial in (log N, 9).
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In the following section, we state some of the most important applications of Cop-
persmith’s method when applied to the RSA cryptosystem.

3.3 Applications of Coppersmith’s method in the univariate
case

“How thoroughly it is ingrained in mathematical science that
every real advance goes hand in hand with the invention of
sharper tools and simpler methods which, at the same time,
assist in understanding earlier theories and in casting aside
some more complicated developments”.

David Hilbert (1862-1943)

Attacking RSA with small e by knowing parts of the message:
In the introduction to this section, we showed an easy protocol failure of the RSA
cryptos%lstem with small encryption exponent e. Assume that we encode a message
m < Ne. Since for the ciphertext ¢ = m® < N the modulo N reduction does not affect
the computation of ¢, we can easily recover m by computing the e root of ¢ over the
integers.

Now consider the following problem:

Suppose that m = {\4 + x for some known part M of the message and some
unknown part x < Ne. Can we still recover m?

This situation occurs in the case of so-called stereotyped messages: Assume we al-
ready know a part M of the message which is always the same, for example M corre-
sponds to "Good morning to everybody. Todays session-key is:”. The unknown part x
may consist of the words “very secret”. One should notice that RSA is frequently used
for encrypting session-keys which in turn are then used in symmetric crypto-schemes.
But symmetric crypto-schemes often need keys of length at most 80 bits. Hence, the
above situation, where the unknown part z is smaller than the e root of the modulus
N can easily occur in practice when RSA is used with small exponent e (for instance
with the frequently used choice e = 3).

Now, let us apply Coppersmith’s method to this problem. An application of Theo-
rem 8 immediately yields the following result.

Theorem 9 (Coppersmith) Let (N,e) be an RSA public key. Furthermore, let ¢ :=
(M 4 x0)¢ mod N be an RSA-encrypted message with known M and unknown xg, where

|zo] < Nz.

Then we can find xq in time polynomial in log N and e.
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Applications of Coppersmith’s method in the univariate case

Proof: Define
fn(x) = (M +2)° —c,

which is an univariate monic polynomial of degree e with the small root xg, |zo] < N :
modulo N. An application of Theorem 8 proves the claim.

One should notice that an analogous result holds in the case where the unknown part
z is somewhere in the middle of the message, i.e., m = M + 22% + M’ when z begins at
the k + 1% least significant bit. Observe that we need a small modification in the proof
of Theorem 9, since fx(z) = (M + 2% + M')¢ — ¢ is not a monic polynomial. However
the polynomial 27%¢ fy(z) mod N is monic. Note that the inverse of 2*¢ modulo N must
exist since RSA-moduli are odd. Therefore, we can apply Theorem 8 to the new monic
polynomial.

Factoring RSA-moduli N = pq by knowing half of the bits of p

In other scenarios, an attacker might not get parts of the message, but parts of one of
the factors p, ¢ of the modulus N = pq. For example in the Vanstone-Zuccherato 1D-
based RSA encryption scheme [69], a person’s identity is encoded in his RSA modulus.
Vanstone and Zuccherato proposed one variant, where an 1024-bit N is created such
that 264 of the most significant bits of p are publically specified.

We will now present an attack — also due to Coppersmith — that finds the factor-
ization of N = pq, provided that one knows half of the bits of p. Here we assume wlog
that p > ¢. This result breaks the above variant of the Vanstone-Zuccherato scheme.

Here again, we will present the results of Coppersmith in a slightly more general
form than originally stated in Coppersmith’s work [20], since we will make use of this
more general form in the subsequent chapters of the thesis. We obtain Coppersmith’s
original result in the following theorem for the special case k = 1.

Theorem 10 (Coppersmith: MSBs of kp) Let N = pq withp > q. Furthermore, let
k be an (unknown) integer that is not a multiple of q. Suppose we know an approzimation
D of kp with
1
|kp—p| <2N4.
Then we can find the factorization of N in time polynomial in log N.
Proof: Define the univariate polynomial

fp(z) =2+ p,

which has the root xg = kp — p modulo p with |zg| < 9Ni. The polynomial f,(x) has
degree 6 = 1 and we know a lower bound of p > N 2 since p > q. Therefore, we can
apply Theorem 7 with the parameter choice 3, 0 and ¢y = 2, which gives us the root .
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Applications of Coppersmith’s method in the univariate case

But then we can compute f(x() = kp. Since k is not a multiple of ¢, the computation
of ged(N, f(zg)) yields p. This concludes the proof of the theorem.

We obtain Coppersmith’s original result for the special case k = 1 (here we also remove
the factor 2).

Theorem 11 (Coppersmith: MSBs of p) Let N = pq with p > q. Suppose we know
an approximation p of p with

lp—p| < Ni

Then we can find the factorization of N in time polynomial in log N.

Let us give an interpretation of the result in Theorem 11: We can assume for simplic-
ity that p represents half of the most significant bits of p. Then Coppersmith’s method
finds the rest of the bits of p in polynomial time and hence the factorization of V.

But what happens if an attacker gets half of the least significant bits of p? Analogous
to the case of MSBs of p, one can show similar results when an amount of half of the
bits for any intermediate consecutive bits are unknown. We will only state the result
for the least significant bits of p. A generalization to intermediate consecutive bits is
straight-forward, but we consider the case of intermediate bits neither here nor in the
subsequent sections of this thesis.

In the following theorem, we assume that we know p modulo some sufficiently large
M. In order to interpret this assumption, we can look at the special case M = 2°: This
means that we know the ¢ least significant bits of p. However, the formulation of the
theorem is more general by allowing arbitrary values of M as long as they are sufficiently
large.

Theorem 12 (Coppersmith: LSBs of p) Let N = pq where p, q are of the same
bit-size with p > q. Suppose we know py and M satisfying

po=pmod M  and MZNi.
Then we can find the factorization of N in time polynomial in log N .
Proof: Define the univariate polynomial
fp(@) := xM + po.

Since pg = p mod M, the term zo = 257 is an integer. Observe that f,(xz9) = p and
hence z is a root of f,(x) modulo p. But in order to apply Theorem 7, we need to have
a monic polynomial. Therefore, we compute the inverse M~ of M modulo N. If this
inverse does not exist then ged(N, M) yields the factorization of N.
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Applications of Coppersmith’s method in the univariate case

Next, we compute the monic polynomial

f(@) = M~ fy(2) mod N

with the same root zo = #37° modulo p. Now, we have to bound the size of |zo|. We

know that ¢ < VN < p < 2v/N, since p and q are of the same bit-size. Using M > Ni
yields

NS

b —DPo
2N 4.
S
Since f]’)(:c) has degree 1 and p > N %, we can apply Theorem 7 with the parameter

|lzo| =

choice d =1, § = % and cy = 2. We obtain x = E52% from which we can easily derive
p. This concludes the proof of the theorem.

Extensions to moduli of the form IV = p"q

Recently, there were a number of cryptosystems proposed that rely on the difficulty
to factor an modulus of the form N = p"q. For instance, Fujioke, Okamoto and
Miyaguchi [30] use a modulus N = p?q in an electronic cash scheme. Okamoto and
Uchiyama [54] presented a public-key cryptosystem that is provably as secure as factor-
ing a modulus of the form N = p?q.

In 1998, Takagi [67] observed that the RSA decryption process can be performed
significantly faster using moduli of the form N = p"q for some integer r. Takagi’s scheme
can be viewed as an extension of the Quisquater-Couvreur method (see Section 2.1):
Similarly, one uses the decryption exponents d, = d mod p — 1 and d; = d mod ¢ — 1 to
compute mé
m< mod p” from m¢ mod p using Hensel lifting before the Chinese Remainder Theorem is
applied. The running time of Hensel lifting is negligible compared to the exponentiations.
Since p and ¢ can be chosen of smaller bit-size than in the original RSA-scheme, one
gains performance.

In 1999, Boneh, Durfee and Howgrave-Graham [16] showed that moduli of the form
N = p"q should be handled with care. Their result generalizes Coppersmith’s Theorem
(Theorem 10) to moduli of the form N = p"q. In fact, the following theorem is stated
in the original work of Boneh, Durfee and Howgrave-Graham for the special case k = 1,
but we formulate it in a slightly more general way, since we will use this generalization
later.

mod p and m? mod ¢g. The only difference is that one calculates the term

Theorem 13 (BDH) Let N = p"q, where r is a known constant and p, q are of the
same bit-size. Let k be an (unknown) integer that is not a multiple of p"~'q. Suppose
we know an integer p with

|kp— | < NTHP

Then N can be factored in polynomial time.
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Proof: Define the univariate monic polynomial
for (@) := (x+p)".

Then f(xg) = (kp)” = 0 mod p" for the root z¢g = kp — p with |zg| < N2,

In order to use Coppersmith’s Theorem for monic univariate polynomials (Theo-
rem 7), we have to specify the degree § = r of f,-(x) and a lower bound N B for the
divisor p” of N. Since p > %q, we know that p'+! = % > %N. This implies

P> <1N> N %Nril

2

Hence we can define 3 := T—_TH — @. An application of Theorem 7 with the parameter

choice 9, § and ¢y = 2 shows that we can find all roots that are of absolute value at
most

52 r 2 + 1 ro 1 T
INGT =2N +1)2 (+DlogN ' rlog2 N > QN (r+1)2 logN — N (r+1)2

Thus, we can find the value xy = kp — p which then in turn gives us the value of kp.
Since k is not a multiple of p"~'q, we know that kp is not a multiple of N. Therefore

ged(N, kp) is either of the form p® or of the form gp’ for some integers i < r, j < r. If

we obtain p’ then we can find p by guessing i and computing the i*" root of p'. In the

case qp’, we compute % and further proceed as in the first case. Hence, we obtain the
complete factorization of N which concludes the proof of the theorem.

Let us briefly discuss the implications of Theorem 13 in terms of the fraction of bits of
p that is sufficient to factor NV, i.e., we only consider the special case where k = 1. Since
N is of size roughly p"+!, one could also formulate the theorem for an approximation p
with .

lp—p|<prFl.

Thus, we need an amount of roughly ?11 of the bits of p in order to factor N. That
means for the case r = 1, we need half of the most significant bits of p, which is exactly
Coppersmith’s result. So for example if N is an 1000-bit modulus then we need about
250 bits of p. But for = 2, we need only one third of the bits of p. Again, if N is 1000
bit then p, q are of size 333 bit and we only need to know 111 bit.

Boneh, Durfee and Howgrave-Graham remarked that for

log N
r=Q(————|,
loglog N
loglog N

a fraction of O( Tog N ) of the bits of p is sufficient. But this is a total amount of
O(loglog N) bits, which in turn can be guessed in time O(log N). Therefore, moduli
of the form N = p"q can be factored in time polynomial in the bit-length of N if

r= Q(lolgolgo ]gv ). However in cryptographic applications, r is normally a small constant.
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3.4 The multivariate case

“When the mathematician says that such and such a propo-
sition is true of one thing, it may be interesting, and it is
surely safe. But when he tries to extend his proposition to
everything, though it is much more interesting, it is also
much more dangerous.”

E. Kasner and J. Newman

A very natural question is whether one can extend Coppersmith’s to the case of mul-
tivariate modular polynomial equations. Hence, we will study here the following problem:

Let N be a composite number of unknown factorization and b be a divisor of N,
where b > N for some known 3. Given a polynomial fy(x1,...,x;) € Z[xy, ..., o]
with degree 0; in each variable z;. Find in time polynomial in (log N, max;{d;}, k)
all roots (r1,...,r.) € ZF of fy(zy,...,7) modulo b, where |r;] < X; for some
bounds X;,i=1,...,k.

In principle there is no problem in applying Coppersmith’s methodology from the
previous section that transforms modular polynomials into integer polynomials with the

same small root. That is, we can construct from fy(z1,...,z,) a polynomial f(z1,...,z,)
with the same small root over the integers and not just modulo b.
We can explicitly state a condition on the upper bounds Xj,..., X; which tells us

when this reduction from the modular to the integer case succeeds. This condition is
given in the following Lemma due to Howgrave-Graham which is a direct generalization
of Theorem 5 to the multivariate case.

Theorem 14 (Howgrave-Graham) Let f(x1,...,x) be a polynomial in k variables
with n monomials. Further, let m be a positive integer. Suppose that

(1) f(ri,...,7) = 0mod b™ where |r;| < X;, i =1,...,k
(2) | f(z1X1,. .., 2 Xp)| < 1\7/_”%
Then f(r1,...,r%) = 0 holds over the integers.

The proof of Theorem 14 is completely analogous to the proof of Theorem 5 in the
previous section. Therefore, we omit it. We will use Theorem 14 frequently in the
subsequent chapters of this thesis in the bivariate and trivariate case.

Up to now, everything works completely similar to the univariate modular case. But
assume that we manage to construct a polynomial f(xy,...,zx) with a small root over
the integers, then there remains a serious problem:

Problem: How can we extract the integer roots of f(x1,z2,...,x)?
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Whereas root finding for univariate polynomials can be done in time polynomial in
the input-size, one cannot solve the problem for multivariate polynomials in general.
A simple reason for the impossibility of an efficient solution is the number of possible
solutions. By a fundamental theorem of algebra, the number of integer solutions of an
univariate polynomial f(x) is bounded by its degree. Now consider for instance the
bivariate polynomial

Nz y) =z —y.

This polynomial has infinitely many integer solutions which all lie on the line y = =.
Therefore, one cannot enumerate the solutions.

Let us consider a second bivariate polynomial fo(x,y) := z+y—2. The integer roots
of this polynomial lie on the line y = 2 — x, which crosses the line y = x in the point
(xo,y0) = (1,1). Thus, the point (xg,yo) is a common zero of both polynomials. Can
we find common zeros of bivariate polynomials in general? Then one could generalize
Coppersmith’s method in the following way:

Instead of finding just one polynomial f(z1,...,x;) that has some small root
(r1,...,71) over the integers, we use the L3-algorithm in order two find k different
polynomials with the same small root over the integers. Then we compute the
common roots of all polynomials.

Unfortunately, this approach cannot work in general. Let us consider the polynomial
f3(x,y) := 2% — y2. Since ged(f1, f3) = f1, the common zeros of f; and f3 are the roots
of the polynomial fi. Hence it seems that we did not gain very much. However, it might
be possible to extract common roots if the number of common roots is not too large.

The resultant heuristic
Let us look at projections of the common roots on one variable. Define

P, :={x € Z | There is an y € Z such that fi(x,y) = fo(x,y) = 0}.

Then P, is the projection of the common roots of f; and fo onto the z-coordinate. It
remains to show that we can efficiently compute the set P,. This can be done using
resultants of polynomials (for an introduction into the theory of resultants see [22, 23,
72]).

Let r(z) := resy(f1, f2) be the resultant of f; and fy with respect to the variable
y. Then r(z) is an univariate polynomial in the variable z, which can be efficiently
computed as the determinant of a Sylvester matrix that consists of shifted versions of
f1 and fy (for details see [22]).
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Moreover, let

R, :={x € Z|r(z)=0}.

It is a well-known fact that P, C R, (see for instance [23]). Therefore, we can compute
all elements of P, by computing the integer roots of the polynomial r(z). Symmetrically,
we can compute res,(f1, f2) in order to find the candidates for the y-coordinates of the
common roots.

Let us consider the resultant computations for our simple examples fi(x,y) := z—vy,
fo(z,y) ==z +y—2 and f3(z,y) := 2? — y?. We compute res,(f1, f2) = 2 — 1 and
resy(f1, fo) = y — 1, which gives us the unique common root (1,1) of both polynomials.
On the other hand, we obtain res,(fi, f3) = resy(fi,f3) = 0. Since the resultant is
an univariate polynomial of finite degree, it contains infinitely many zeros iff it is the
zero polynomial. That means: Whenever two polynomials have infinitely many roots in
common (these common roots must only be roots over the complex numbers C) then
the resultant of these polynomials is identical to the zero polynomial. In this case, fi
and fs must share a nontrivial greatest common divisor.

Hence, we can compute the common roots of two bivariate polynomials if their resul-
tant is not identical to the zero polynomial. One can extend this approach to k-variate
polynomials. Let fq,..., fr be polynomials in the variables x1,...,2z;. Then the k£ — 1
resultants

hy = resg, (f1, f2), ha = resg, (f2, f3), - - s he—1 = resg, (fr—1, fx)

are (k — 1)-variate polynomials in the variables xs, ..., zx. Thus, we have eliminated the
variable x1. If none of these resultants is the zero polynomial, we can further eliminate
the variable x9 by computing the resultants

resy, = (h1,h2),...,resy, (hg—2, hi_1).

We can proceed in this way until we have eliminated all but the last variable z;. Then
the last resultant is an univariate polynomial in x; which can be solved by standard root
finding algorithms.

Hence in order to generalize Coppersmith’s method to the multivariate modular case,
we construct k different k-variate polynomials f1,..., fr with some common small root.
The construction of these polynomials is analogous to the univariate case. Afterwards,
we try to extract the common roots by resultant computations. This procedure fails if
in some step one of the resultants is the zero polynomial.
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/ Coppersmith Method in the multivariate case (informally) \
INPUT: - Polynomial fy(z1,22,...,2) of degree §; in each variable z;, i =
1,...,k.

— Modulus N of unknown factorization which is a multiple of b and a
lower bound b > NP

Step 1: Fix an integer m (depending on N, 3, §; and k) and construct a set G of
k-variate polynomials, where each g;(z1,...,x) € G satisfies

g(x1,...,zr) = 0mod b™.

Step 2: Construct the lattice L from the g;(z) € G: The basis vectors of L are the
coefficient vectors of g;(z1Xy,...,xpXy), where the bounds X;, i = 1,....,k
are chosen such that the L3-algorithm finds k vectors with norm smaller than

dirl;—"(LL) in L. The size of each bound X; is a function of the parameters N, (3,
0; and k.

Step 3: Apply the L3-algorithm to the lattice bases. Let vy, ..., v; be the k shortest
vectors in the L3-reduced bases. The vectors vy, ..., v; are the coefficient vec-
tors of some polynomial fl(.%'le, ce ,J}ka), oo ,fk(.%'le, ce ,.%'ka) Con-
struct fi(z1,..., %K)y, fu(x1, ..., xx) from vy, ..., vg.

Step 4: Fori=1,...,k:
Compute via resultant computations an univariate polynomial h;(z;) from

f17 A 7fk'
OUTPUT: Polynomials h;(z;) with h;(r;) = 0 over Z whenever fy(r1,...,rs) =
Omod b and |r;| < X; fori=1,... k. /

The method fails to find the roots if the h;(z;) are zero polynomials. The problem is that
the k shortest vectors of an L3-reduced basis are linearly independent, but we cannot
guarantee that the corresponding polynomials that are constructed from these vectors
are independent in an algebraical sense: For instance, one polynomial may be a non-
trivial multiple of another polynomial. In this case, at least one resultant computation
fails, and therefore the whole approach must fail.

However, one should not overemphasize the negative aspects of the multivariate
method. We will frequently use this method throughout the thesis. Our experiments
confirm that the resultant computations are in many situations a useful method in order
to extract roots of multivariate polynomials over the integers. Moreover, we made the
following interesting experimental observation:
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If we had a fixed construction rule how to choose the set G of polynomials
then either the resultants always yielded the desired small root r1,...,r; or the
resultants were always identically zero. That means for all the methods described
in this thesis, the resultant heuristic either succeeded in every experiment or the
resultant heuristic always failed.

We give several applications of Coppersmith’s multivariate method in this thesis
using resultant computations. Since extracting roots by resultant computations in Cop-
persmith’s method is a heuristic, we will refer to this method as the resultant heuristic.
In each case, we tested this heuristic by several experiments, which show that the heuris-
tic is very useful in practice. Since the resultant heuristic is the only heuristical part
in Coppersmith’s multivariate approach, we will often make the assumption that the
heuristic always works such that we can state our results as theorems. However, in each
case where we assume that the resultant heuristic succeeds, we make this assumption
explicit.

It would be very nice to formulate many of the results in the subsequent chapters
without relying on the resultant heuristic. Therefore, we consider the following problem
as one of the most important theoretical problems arising from the results in this thesis:

Open problem: Find explicit conditions under which Coppersmith’s method in the
multivariate case succeeds to find small roots.

As we mentioned before, we encountered some sets G of polynomials where the resultant
heuristic always fails. Interestingly, those were mostly special cases where we could
find rigorous methods for the multivariate modular approach. Hence a failure of the
resultant heuristic must not imply a failure of Coppersmith’s multivariate approach in
general! Moreover, for polynomials f; of a special form there might be alternative ways
to find the desired small roots. Hence, one of our goals throughout this thesis will be:

Goal: Find special cases where Coppersmith’s multivariate method is provable.
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4 Weak Keys in RSA

“The trouble with the integers is that we
have examined only the small ones.”
Ronald Graham

4.1 Introduction

All the attacks that are proposed in this chapter as well as in the subsequent chapters
are factorization algorithms. Since factoring an RSA modulus is assumed to be a hard
problem and since our goal is to find polynomial time attacks on RSA, we have to relax
the problem of factoring N. That means, we have to indentify practically interesting
special cases, where the factorization problem is solvable in polynomial time.

In this chapter, the main idea to make the factorization problem feasible is to use
the information given by the RSA public exponent e. Hence, the central question we
will study here is:

Question: When does e provide enough information to factor N?

At first sight, this question seems to make not much sense because there is no reason
that e should give an attacker any useful information at all about the factorization. The
only thing we learn is that e is in Z} ;. Indeed most of the known cryptanalytic attacks
on RSA focus on the difficulty to fgactor the modulus N without taking into account
additional information that might be encoded in the public exponent e. Hence it is
tempting for crypto-designers to use public exponents e of a very special structure that
yield good performance in the encrypting/decryption process. For example, one might
be tempted to use public exponents e that correspond to small secret exponents d in
order to speed up the decryption process.

Another possibility of an RSA-variant with a fast decryption process was introduced
by Yen, Kim, Lim and Moon [73, 74] in 2001. This YKLM-scheme is designed to coun-
teract the fault-based attack on CRT-RSA (i.e., RSA with Chinese Remaindering) of
Boneh, DeMillo and Lipton [11]. In order to be efficient, the YKLM-scheme uses a new
key generation process that produces public keys (IV, e) of a special form.

In 1990, Wiener [71] was the first one who observed that information encoded in the
public exponent e might help to factor the modulus N. He showed that every public
exponent e that corresponds to a secret exponent d < %N i yields the factorization of N
in time polynomial in the bit-size of N. This result is up to now the most famous attack
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on RSA. In order to recover the secret key and the factorization of N, Wiener applied
the continued fraction method — a variant of the Euclidean Algorithm — to the public
key tuple (IV,e). We prove Wiener’s result in Section 4.2 using Coppersmith’s method
(see Chapter 3) in combination with two-dimensional lattices.

In 1999, Boneh and Durfee [12] improved upon Wiener’s result by showing that every
public exponent e that corresponds to a secret exponent d < N%292 yields the factor-
ization of N (see Section 7.2). The Boneh-Durfee attack makes use of Coppersmith’s
method for finding roots of bivariate modular polynomial equations (see Section 3.4).
As opposed to Wiener’s method, this approach is heuristic. However, many experiments
by various researchers confirm that this heuristic works very well in practice. In fact, no
systematic failure is known and the method is supposed to find the factorization of N
when applied with suitable parameter choices.

The Wiener attack as well as the Boneh-Durfee attack cannot be applied to the
YKLM-scheme [73, 74]. Although the YKLM-scheme uses a special key generation
algorithm in order to provide good decryption performance, the secret keys d are not
chosen to be small. On the other hand, in Section 4.3 we present an extension of
Wiener’s approach that leads to a much larger class of secret keys d which are insecure.
Furthermore, in Section 4.4 we show that the keys which are generated in the YKLM-
scheme belong to this larger class, for all reasonable parameter choices of the scheme.
As a result, we obtain that the public keys (N, e) in the YKLM-scheme also yield the
factorization of N in polynomial time.

Let us put the cryptanalytic approaches above into a more general framework by
defining the notion of weak keys: The results so far show that there are classes of public
keys (N, e), where every element in the class yields the factorization of N. For instance,
in the case of the Wiener attack the class consists of all public key tuples (N, e) where
ed —1=0mod ¢(N) with d < %Ni One may view the auxiliary input e as a hint how
to factor N: Without having e we assume that factoring N is hard, but with the help
of e it becomes feasible.

We call a class in which every element (N, e) yields the factorization of N weak and
the elements (N, e) of the weak class are called weak keys. To be more precise:

Definition 15 Let C be a class of RSA public keys (N,e). The size of the class C' is
defined by
sizec(N) = [{e € Zyny | (N, €) € C}.

C is called weak if:
1. sizec(N) = Q(N7) for some v > 0.

2. There exists a probabilistic algorithm A that on every input (N, e) € C outputs the
factorization of N in time polynomial in log(N).

The elements of a weak class are called weak keys.
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Note that the size of a weak class is a function in N which denotes the number of
elements that can be factored by the corresponding algorithm A. For example, the size
of the class in the Wiener attack is at least N4 ¢. Here the e-term comes from the fact
that only those d with ged(d, ¢(IN)) = 1 define legitimate RSA keys.

Let us give another (trivial) example of a weak class of public keys. Every tuple
(N,e) with e = kq, 1 < k < p is a weak key, since the computation ged(N,e) = ¢ yields
the factorization. These are p > N 3 many weak keys (remember that we assume wlog
that p > ¢). By Theorem 10, we see that even the knowledge of e = kq + r for some
unknown |r| < N T suffices to find the factorization of N. This implies the existence of

a weak class with size Q(N %)

We think that it is a very natural question to study how many of the possible choices
of the public keys are indeed weak keys that should not be used in the design of cryptosys-
tems. For the Wiener attack and the Boneh-Durfee attack it is easy for a crypto-designer
to see that a key is weak by inspecting the most significant bits of d. For the extension of
Wiener’s attack that we describe in Section 4.3, the weakness of the keys is not obvious.
One can understand our new result as a warning for crypto-designers to be careful when
using keys with a special structure.

There also is an imminent danger from weak keys in the case of untrusted servers that
create public/secret key pairs: Crépeau and Slakmon [25] showed how to use weak keys
in order to construct malicious RSA systems by encoding information into the public
exponent e. Our new class of weak keys is well-suited for the use in such systems and
leads to a large variety of new malicious keys.

Thus, we can define the main goal of this chapter as following:

Goal: Identify weak classes with size as large as possible.

Moreover, we demand that our weak classes have some practical applications in the
design of RSA-based cryptosystems. For instance, the weakness of the class of keys
(N,e) with e = kg + r,|r| < N1 that was introduced in the example above, shows that
one variant of the Vanstone-Zuccherato ID-based RSA encryption scheme [69] can be
broken in polynomial time (this was already noticed by Coppersmith [20]).

We show that the following practically interesting class C is weak. The class C
contains all the keys (N, e) where e satisfies a relation

ew + z = 0 mod ¢(N)

for some small, unknown parameters w and z. In order to provide bounds for the size
of w and z, let us first consider the normal RSA-case, where p — ¢ = Q(\/N ). Note,
that for randomly chosen primes of the same bit-size, the probability that p and ¢ agree
in the ¢ most significant bits is roughly 2=, Hence, we have p — ¢ = Q(\/N) with
overwhelming probability.
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For the case p — q = Q(\/N ), we introduce a variant of Wiener’s attack that works
for all public keys (N, e) where ew + z = k¢(N), k € N with

1
w < gNi and |z| = (’)(N*%ew).

We want to point out that our parameter choices in the attack exclude trivial solutions
ew + z = 0 over the integers, since |z| < ew. Thus, our parameters always guarantee
that ew + z is a positive multiple of ¢(IV).

Since we want to show that the above class of keys is indeed weak, we have to prove
the existence of a probabilistic polynomial time algorithm that on input (N, e) outputs
the factors p and ¢. For our class, we present an explicit factorization algorithms that
finds p and ¢. Thus, our method is constructive: Given an RSA key tuple (N,e), one
can run our algorithm to test whether the key belongs to the corresponding weak class
or not. This property may be useful in the design of cryptosystems during the key
generation process to ensure that one does not accidentally create a weak key (although
the probability is negligible if e is chosen randomly in ZZ )

Our result can be seen as a generalization of Wiener’s result. In Wiener’s attack, the
weak keys (IV,e) have the special structure that ed —1 = 0 mod ¢(N) for some secret
exponent d < %N T. Hence Wiener’s method is a special case of our attack, where w = d
and z = —1. If we want to compare Wiener’s results to ours in terms of the secret key
d, then Wiener’s method works whenever d < %N i whereas our method applies to all
secret keys of the form

1
d=—2 mod d(N) with w < gN% and |z| = O(Nfgew).
z

It is important to notice that in contrast to the approaches of Wiener and Boneh-Durfee,
the secret keys in our attack are not small itself but have a “small decomposition” in w
and z. So they might look innocuous to crypto-designers and may be tempting to use
in the design of cryptosystems with good encryption/decryption performance.

As an example, in Section 4.4 we show that the public keys (NN, e) constructed in
the YKLM-scheme can be attacked by our generalization of Wiener’s method. Namely,
we can express the secret exponent d in terms of small w and z, which breaks the
cryptosystem for all reasonable parameter choices.

Similar to Wiener’s method (Section 4.2), in our generalization we can use a two-
dimensional lattice to recover the unknown parameter w. Then, in order to find the
unknown parameter z and the factorization, our approach is based on Coppersmith’s
method that factors N given the upper half of the bits of p (see Theorem 11).

In this chapter our goal is to identify weak classes of maximal size. But how many
weak keys (NN, e) do we have in the case ew — z = 0 mod ¢(N) with

w<>Ni and |z|:(9(N_%ew)?

Wl

52



Introduction: Weak Keys in RSA

One should observe that for w of size roughly Ni 4, the parameter e must be of size at
least N1 in order to satisfy a relation of the form ew + z = 0 mod ¢(NN). Thus, |z| can
be chosen of size at least w. If e is roughly N, Wthh is normally the case for small d,
then in the attack |z| can even be chosen of size Niw.

One should expect that for fixed N the number of public keys (N, e) for which our
approach applies is roughly the number of tuples (w, z) within the given bounds. By the
observation above, this number can be upper bounded by w - N Tw <N i Interestingly,
we are able to show that the size of the class C of keys (N, e) for which our algorithm
works is also lower bounded by

sizec(N) = Q(N’fe).

Furthermore, this bound can be improved if we skip the restriction that p —q = Q(\/N ).
In 2001, de Weger [70] generalized Wiener’s method to arbitrary prime differences

1
p—q:NiJ“’, Whereogygz

It is important to notice that for prime differences p—q = O(NN i) an algorithm of Fermat
finds the factorization in polynomial time (see [40], Section V.3).

de Weger showed that Wiener’s method succeeds whenever d < N 377, In terms of
weak keys (N, e) this means that all those keys (NV,e) are weak where e € Z} B(n) With

correspondmg secret exponent d < N3 Therefore, the size of de Weger’s weak class
is Q(N 27776,

de Weger’s method also applies to our extension of Wlener s attack. Interestingly,
we are able to show that for prime differences p — ¢ = N 4*'7 0 < v < 1 our attack

1
defines a weak class C' of size
sizec(N) = Q(N'777¢).

Thus, our attack has a nice interpolation property towards Fermat’s algorithm: As p—g¢q
decreases, the number of weak public keys increases. For v approaching zero almost all
keys are weak, corresponding to the fact that NV can be easily factored without any hint
that is encoded in e.

As a by-product, we get a simple probabilistic factorization algorithm with expected
running time O(N77€) comparable to Fermat-Factorization: For a fixed N, choose ran-
dom e < N and apply our algorithm to each choice (N, e) until (N, e) is a weak key that
yields the factorization.

Notice that the interpolation property above seems to imply that one cannot improve
our approach significantly. On the other hand, there might be different techniques — for
example lattice reduction techniques for higher dimensional lattices — that lead to larger
classes of weak keys for the prime difference p — g = Q(\/N ). But at the moment this is
an open question.
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4.2 \Wiener’'s attack

“Although this may seem a paradox, all exact science
is dominated by the idea of approximation.”
Bertrand Russell

We recall Wiener’s famous attack on RSA with secret exponent d < %N i As
opposed to Wiener, we do not state the results in terms of continued fractions but in
terms of lattices. Namely, we use a two-dimensional lattice. Our approach has three
main advantages over Wiener’s method:

e In order to find the secret key d with the help of continued fractions, one has to
test among O(log N) candidates in the continued fraction expansion of %, whereas
in our method we get d directly.

e We are able to prove a generalization of Wiener’s method due to Verheul and
Tilborg [68] in a much simpler fashion than stated in the original paper.

e The two-dimensional lattice approach will be used again in Chapter 5, where we
introduce another attack on RSA with so-called small CRT-exponents. One can
improve this attack by generalizing to arbitrary lattice dimension (see Section 5.3),
which is not possible using continued fractions.

Theorem 16 (Wiener) Let (N,e) be an RSA public key with e € Liy(ny and corre-
sponding secret exponent d. Suppose

=

d< -Na.

W =

Then N can be factored in time O(log?(N)).
Proof. Let us start by looking at the RSA key-equation
ed =1 mod ¢(N).

This equation can also be written as ed = 1 + k¢(INV) for some integer k. Note that
ed —1 e

k=—rer < ——d<d.
¢(N) ~ o(N)
Since ¢(N) = (p—1)(¢ —1) = N — p — ¢+ 1, we can rewrite our equation as
ed+k(p+q—1)—1=FkN. (4.1)

This gives us a bivariate polynomial

In(@y) =ex+y
with a root (xg,y0) = (d,k(p+¢q—1) — 1) modulo N.
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Roadmap of the proof

e Applying Coppersmith’s method, we transform the polynomial fx(z,y) into a
polynomial f(z,y) which has the root (x,yo) over the integers and not just modulo
N.

e We show how to extract the root (xg,yo) from the polynomial f(x,y).

e The term (g, yo) gives us the factorization of N.

In order to apply Coppersmith’s method, we use a special case of Howgrave-Graham’s
theorem (Theorem 14) for the bivariate case.

Theorem 17 (Howgrave-Graham) Let f(x,y) be a polynomial that is a sum of at
most two monomaials. Suppose

(1) f(xo,y0) = 0mod N, where |zo| < X and |yo| <Y
(2) | f(@X,yY)| < ZN

Then f(xo,y0) = 0 holds over the integers.

Since k£ < d and

=

In order to find upper bounds for xy and yg, we define X := N1,

p+q< %\/ﬁ (see Section 2.1), we obtain

<7\/_X

We define Y := %\/NX Thus, we have o < X and yg < Y.

With the definition of X and Y, our polynomial fx satisfies condition (1) of Theo-
rem 17. Notice that

Ifnv(@X,yY)] = /(eX)2+Y2 > eX >ed > k¢(N) > N.

Therefore fy does not satisfy condition (2).

In order to construct a polynomial f which satisfies both conditions, we use the
auxiliary polynomial fo(x,y) = Nz. This polynomial trivially satisfies condition (1),
since fy is the zero polynomial modulo N. Thus every integer linear combination

g(x’y) = COfN(xay) + leO(xay) C1,C2 € 7

satisfies condition (7). We have to search for a small norm integer linear combination
that also satisfies condition (2). The coefficient vectors of g(zX,yY") form a lattice L in
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Z2. L is spanned by the coefficient vectors of fo(zX,yY) and fx(zX,yY). Therefore, a
basis B of L is given by the span of the row vectors of the following (2 x 2)-matrix:

NX
B:[eX Y]'

In order to satisfy condition (2), we have to find a vector v = (¢, c1) - B € L with |v| <
%N . Such a vector v is the coefficient vector of a bivariate polynomial f(zX,yY) =
(coN + c1e)Xx + ¢1Yy. Thus, the polynomial f(z,y) satisfies both conditions in Theo-
rem 17.

Note that a shortest vector in L can be found by using the Gauss reduction algorithm
(see [58]). Therefore, we have to prove that L indeed contains a sufficiently short vector.

Lemma 18 L contains a shortest vector with norm smaller than %N.

Proof: By Minkowski’s theorem (Theorem 3), L must contain a vector v with |v| <

V/2det(L). Hence |v| < %N, if the condition
1 2

holds. Since det(L) = NXY = . N2 X2, we obtain

V2
x2< Y2 N1,
12
But X = %Ni, which proves the claim.

By Lemma 18, our lattice L contains a shortest vector v = (cg, ¢1)-B with |v] < %N.
This vector v corresponds to a bivariate polynomial f(z,y) = (coN + ci1e)z + c1y. We

know by Theorem 17 that f(z,y) has the root (zg,yo) over the integers. The following
lemma shows that we obtain the unknown root (zg,yo) directly from f’s coefficients
(coN + cie) and ¢.
Lemma 19 Let v = (cg,c1) - B be a shortest vector in L. Then

(0, 90) = (|e1], [coN + cael).

Proof: By Lemma 18 and Theorem 17, we have

f(xo,y0) = (coN + c1e)xg + c1yo = 0.
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This implies
Lo €1

Yo  coN +cie

The goal is to show that the fractions on both sides of the equality are in their lowest
terms. This would imply that the nominators and denominators are equal up to the
sign. But zg and yg are positive integers by construction which proves the lemma.

Our first claim is that ged(xo,y0) = ged(d, k(p + ¢ — 1) — 1) = 1. By equation (4.1),
we know that ged(d, k(p+q— 1) — 1) divides the term kN. Therefore, it suffices to show
that ged(d, kN) = 1. From the equation ed — k¢(N) = 1, we see that ged(d, k) = 1. But
we also know that d < %N %, which implies ged(d,p) = 1 as well as ged(d, q) = 1. This
concludes the proof of the first claim.

Our second claim is that ged(eq, N +¢1e) = 1. First, note that ged(eq,coN +c1e) =
ged(eq, coN). Our vector v is a shortest vector in L. Hence, we must have ged(cq, ¢) = 1,
since otherwise we could divide v by ged(cq, ¢), obtaining a shorter vector. This implies
ged(cr,coN) = (c1, N). Now observe that Lemma 18 implies that ¢;Y < <= N. Thus,

V2
c < % = 3‘/—5 = Ni. Hence we get ged(cy,p) = 1 as well as ged(eq,q) = 1. This

concludes the proof of the second claim and of the lemma.

By Lemma 19, we obtain the tuple (z¢,yp). Now, we can use equation (4.1) to compute

exo + Yo

F=—%

Using equation (4.1) again, we see that
1—ed
ptg=——+N+1

If we substitute ¢ = % and multiply both sides by p, we finally obtain

1—ed
p2—< ke +N+1>p+N:O.

This is a quadratic equation over the integers in the unknown parameter p. It can easily
be solved in time polynomial in log N and its two solutions are the desired factors p, ¢

of N.
Let us briefly summarize the whole factorization algorithm.
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Wiener’s attack

/ Algorithm Wiener-Attack \

INPUT: (N,e), where N = pq

1. Construct the lattice L with basis B.
2. Find a shortest vector v = (¢g,c1) - B € L using Gauss reduction.
3. Compute (z9,y0) = (|e1], |coN + cie|) and k = <200,

4. Output the two solutions of the quadratic equation

1_
22—< kex°+N+1>z+N:0.

OUTPUT: p,q

. /

Since every step in the Algorithm Wiener-attack can be done in time O(log?(N)), this
concludes the proof of Theorem 16. &

The result of Verheul and Tilborg
Let us recall that for Wiener’s result, the RSA equation ed — 1 = k(N — (p+ ¢ — 1))
gives us a polynomial

fn(z,y) = ex — y with root (zg,y0) = (d, k(p + ¢) + 1) mod N.

Now, Verheul and Tilborg [68] studied the case where an attacker additionally guesses
high order bits of p. Assume we know p with |p — p| < N3~ and by calculating ¢ = %
we know an approximation of ¢ with accuracy N 377 as well.

In this case, the RSA equation ed — 1 = k(N — (p+ ¢ — 1)) gives us a polynomial

fao(ayy) = ew —y with oot (o, yh) = (d,k(p — 5+ q — @) + 1) mod N’
where N’:N+1—ﬁ1—q.
We have |yp| < dN277. Working through the arithmetic of the proof of Theorem 16
and neglecting constants, this gives us the condition

d< Nit3,

Wiener’s result follows as the special case where v = 0, i.e., where the attacker guesses
no additional bits.
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Let us interpret the result of Verheul and Tilborg: In order to improve Wiener’s
bound by r bits, an attacker has to guess an amount of 27 bits. Although this method
is no longer a polynomial time attack on RSA, it might be feasible in practice on todays
computers for values up to approximately r = 30.

This result shows that it is dangerous to choose secret exponents d which are slightly
above the Wiener bound. Similar extensions also hold for the Boneh-Durfee attack on
small secret exponent RSA, which we describe in Section 7.2.

4.3 Generalizing Wiener’s attack

“One should always generalize.”
Carl Jacobi

The attack of Wiener applies to every public key (IV,e) that satisfies the relation
ed — 1 = 0mod ¢(N) for some d < %Ni In this section, we will generalize Wiener’s
attack to all public keys (N, e), where e satisfies a relation ew + z = 0 mod ¢(N) with
small parameters w and z. In general, the bounds on w and z will depend on the size
of e and the size of p — ¢q. Wlog, we can assume in the following that p — ¢ > N1, since
otherwise Fermat’s factorization algorithm factors IV in polynomial time.

In this section, we will prove the following main theorem. Note that the constants
in this theorem are not optimized.

Theorem 20 Given an RSA public key tuple (N,e), where N = pq. Suppose that e
satisfies an equation ew + z = 0 mod ¢(N) with

3
1 N) N1 1
O<w< < $N) Nt and |z| < =
3 e p—q 8

e p—q .
o(N) Ni

Then N can be factored in time O(log?(N)).

Let us consider this theorem in the light of standard RSA, where we have p — ¢ > ¢N 3
for some ¢ < 1. Since p and ¢ are of the same bit-size, we also have an upper bound
p—q < N2 (see Section 2.1).

Using the above inequalities for our bounds on w and z yields the following corollary.

Corollary 21 Given an RSA public key tuple (N,e), where N = pq with p — q > ¢N2
for some ¢ < 1. Suppose that e satisfies an equation ew + z = 0 mod ¢(N) with

$(N)

Ni and |z] <
e

0< <1
w< =
-3

ol o
=N
=z

Then N can be factored in time O(log?(N)).
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Finally, we consider the normal RSA-case where e € Z;( N) which implies e < ¢(V).

1
Furthermore, we observe that (;zf ]f,) >N -1

Corollary 22 Given an RSA public key tuple (N,e), where N = pq, e € Z;(N) and

p—q> ¢N3> for some ¢ < 1. Suppose that e satisfies an equation ew + z = 0 mod ¢(N)
with 1
0<w< gNi and |z] < %N_%ew.

Then N can be factored in time O(log?(N)).

Wiener’s theorem is a special case of Corollary 22, where w = d and z = —1. Since
we do not fix the parameter z to the constant —1, we can apply our method to a much
larger class of public keys.

The rest of this section is dedicated to the proof of Theorem 20. We combine the
lattice-based method that we introduced in Section 4.2 with an approach of de Weger [70],
who generalized Wiener’s attack to arbitrary prime differences p — g > N 3

As opposed to the proof of Theorem 16, we do not obtain the term p + ¢ directly
from the lattice-based approach, since we have not fixed z to the constant —1. Thus,
z introduces an additive error to the term p + ¢q. We show, that an approximation of
p + q leads to an approximation of p — ¢q. Combining both approximations gives us an
approximation of p. Then, we use a theorem of Coppersmith (Theorem 11) to find the
factorization of N.

Theorem 11 (Coppersmith) Let N = pg with p > q. Suppose we know an ap-
proximation p of p with
|p— 5| < N

Then we can find the factorization of N in time polynomial in log N.
Now we are ready to state the proof of Theorem 20.

Proof. [Theorem 20] We know that e satisfies an equation

ew+ z=kp(N) for some k € Z, (4.2)
where .
1 [¢(N) N1 1 e p—gq
O<w< - and |z| < - - w. 4.3
3V e p—ygq H_8¢(N) Ni (4.3)

We want to argue that we can assume wlog that

ged(w, k) = 1. (4.4)
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By equation (4.2), every integer that divides both w and k must also divide z. Thus,
if we assume that ged(w, k) > 1, we can divide equamon (4.2) by gcd(w k), obtaining

an equivalent relation with even smaller parameters w’ = o d(w A T m d(w B and
kK = m, where w’ and k' are co-prime.
Using ¢(N) = (N + 1 — p — q), we rewrite equation (4.2) as
ew+k(p+q—2VN)+2=k(N +1-2VN). (4.5)

This gives us a bivariate polynomial

fu(z,y) =er+y

with the root (zg,y0) = (w, k(p + ¢ — 2v/N) 4 z) modulo M = N + 1 — 2v/N.
The proof will now proceed in the following steps.

Roadmap of the proof

e We apply Coppersmith’s method using the formulation of Howgrave-Graham to
transform the polynomial fy/(z,y) into a polynomial f(x,y) satisfying f(xo,y0) =
0 over Z (and not just modulo M).

e We use f to extract the unknown parameters (z,yo) and k.
e From (x,y0) and k, we compute an approximation of p + gq.
e From the approximation of p + ¢, we compute an approximation of p — q.

e Combining both approximation, we obtain an approximation of p which gives us
the factorization of N using Coppersmith’s Theorem (Theorem 11).

We recall Howgrave-Graham’s theorem (Theorem 14) for our special case. Here, we
reuse the formulation of Howgrave-Graham’s theorem from Section 4.2.

Theorem 17 (Howgrave-Graham) Let f(z,y) be a polynomial that is a sum of
at most two monomial. Suppose

(1) F(x0.y0) = 0 mod N, where |ao| < X and |yo| < ¥
(2) |f (X, yY)] < N

Then f(xo,y0) = 0 holds over the integers.

In order to apply Theorem 17, we need upper bounds for the unknown parameters

3
xo and yp. Let X := % @é\%. Then zyp = w < X by definition.
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Note that equation (4.3) clearly implies |z| < %ew. Since k = Z“E’]‘\F,)Z , we can conclude
that 1
ew ew e
S <k<2 <2 X. 4.6
2o(v) =" =5 =) o)
In addition, de Weger [70] observed that 0 < p + g — 2V/N < M. This can easily be

o 4NZ
seen by writing

P—a)?*=@p+9*—4N = (p+q—2VN)(p+q+2VN).
It follows that p + ¢ — 2v/N > 0 and

(p—q)? (p—q)?
p+q—2VN = < ;
p+q+2VN 4v N

which proves de Weger’s inequality.
Using de Weger’s inequality together with (4.6), we can provide an upper bound for
Yo-

yo=k(p+q—2VN)—1< EMX
2 $(N)Nz

2
We define YV := %%X . Now, our polynomial fy/(z,y) satisfies condition (1) of

2
Howgrave-Graham’s theorem. The auxiliary polynomial fo(z,y) = Mz also satisfies
the first condition, since it is the zero polynomial modulo M. Hence the integer linear
combinations

g(x> y) = COfO('Ia y) + leM(xa y)
satisfy condition (7). The coefficient vectors of g(zX,yY") form a lattice L in Z2, where
L is spanned by the row vectors of the (2 x 2)-lattice basis
MX
B= .
[ eX Y }

We have to search among these coefficient vectors of g(zX,yY’) for a vector v which
satisfies the second condition in Howgrave-Graham’s theorem, namely |v| < %M . Since
we can find a shortest vector in a two-dimensional lattice using Gauss reduction, it suffices
to show that L contains a suitably short vector.

Lemma 23 The lattice L contains a vector v with |v| < %M

Proof: By Minkowski’s theorem (Theorem 3), we know that L contains a vector v with
[v] < +/2det(L). Hence, whenever the condition

V2det(L) < %M

62



Generalizing Wiener’s attack

is satisfied, then |v] < %M The condition is equivalent to det(L) < +M?2. Since
det(L) = M XY, we can plug in the values

X =L o) N Y:EMX and M = (N +1—2VN)
3V e p—q 2(N)N2

and check the inequality. Thus, our condition simplifies to

N < =(N+1-2VN).

=~ =

1
18
But this condition holds whenever N > 4. This concludes the proof.

By Lemma 23, L contains a vector v = (cg,¢1) - B with |v] < %M We interpret v as

the coefficient vector of a polynomial f(xX,yY) and apply Theorem 17. Thus, we know
that f(zo,y0) = 0 over the integer. The following lemma shows how to extract the root

(xo’y(])‘
Lemma 24 Let v = (cg,c1) - B be a shortest vector in L. Then
(z0,90) = (le1], [coM +cre])  and k= |eol.

Proof: Applying Howgrave-Graham’s Theorem, we obtain a polynomial f(z,y) satis-
fying
f(zo,y0) = coMxzo + c1 far(zo,yo) = 0 over Z.

Using equation (4.5), we conclude that fus(xo,yo) = kM. Reordering terms leads to

To C1 '

k_ @

By construction, we know that the parameters k and xg are positive. Our goal is to
show that the fractions on both sides of the equation are in their lowest terms, since
then k = |cg| and zg = |c1]. But ged(k,xz9) = ged(k,w) = 1 as we assumed wlog,
see (4.4). Additionally we have ged(cg,c1) = 1, since v is a shortest vector in L.

Therefore, the coefficients ¢y, c; of a shortest vector in L (in terms of the basis B)
give us the secret parameters xo and k. Using equation (4.5), we can compute

yo = kM — exg = |co| M — |c1|e.

Notice, that exactly one of the coefficients cg, ¢1 is negative. Therefore |yo| = |coM +cqe].
But we know that yg > 0 which proves the claim.
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By Lemma 24, we obtain the secret parameters (xg,yo) and k. Since yo = k(p +q —
2V N) + z, we can compute the term

z
Szy—]{?+2\/ﬁzp+q+z,

which is an approximation of p + ¢ up to some additive error z. We bound the error

term by using equations (4.3) and (4.6):
1 — N —
Ll e 1qw_2¢( ) _p q
8¢(N) Ni ew  4N7

z
k
Define A := 2=%. Notice that in the case p — q < INT we have A < % Therefore, the
AN%

integer closest to s equalls p + q and we can factor NV ilrnlrnediately.1 On the other hand,
we know that p — ¢ < N2, which bounds the error term: A < %NZ.

Our goal is to show that an approximation s of p + ¢ Wi'%h additive error at most A
leads to an approximation § of p — ¢ with error at most %N 1. Then, it follows that ST*'S
is an approximation of p up to an additive error of

s+ 5 - 1’ e +‘
5— P < gls—p—a+i-p+g
1 1.
< 5!8—(p+q)!+5\8—(p—q)\
< %A+ZN%<N%.

By Coppersmith’s theorem (Theorem 11), an approximation of p with error at most
Nt leads to the factorization of N. Hence our approximation %5 yields the desired
factorization.

In order to conclude the proof of Theorem 20, it remains to show that we can indeed
transform our approximation s of p+ ¢ into an approximation § of p — ¢ with the desired

error bound. One can easily relate the terms p 4+ ¢ and p — ¢ using

p—a=vP -2 =V —2N+¢=+/(p+q)?—4N.

Since we have an approximation s of p 4+ ¢, we can compute an approximation § :=
V82 — 4N of p — q. The following lemma shows that § is indeed a well-defined approxi-
mation of p — ¢ within the error bound %N i. The lemma mainly uses the Mean Value
Theorem.

Lemma 25 Let N = pq with p —q > ONi. Given an approzimation of p + q 11uith
error at most j;g , one can find an approximation of p — q with error at most %N 19n
4

polynomial time.
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Proof: As before, let s := p+ g+ r be the approximation of p + ¢ with error |r| < 2=L.

AN
Define § := v/s2 — 4N. In order for § to be well-defined, we need to show that s2—4N > 0.
We know that

s —4AN =(p+q)°+2r(p+q) +r* —4AN = (p—q)* +2r(p+q) +1°. (4.7)

It suffices to show that 2|r|(p+q) < (p —q)?. Instead we prove the slightly better bound

2lr|(p+4q) < %(p—Q)z, (4.8)

which will be useful in the further context of the proof. Since 2|r| < £=%, we only have
2N

1
to show that p + ¢ < %N4(p —q), but

2

2T coNt<pg
3 N1

where the last inequality follows by our pr?condition on the prime difference.

Now we claim that |§ — (p — ¢)| < 2N1. For every continuous function g(z) on the

interval [xg, x| the Mean Value Theorem holds:
x1) —g(z
o € fao,21] ¢ g/(x) = LELZI0)
Tr1 — X0
where ¢'(x) is the first derivate of g(x).

Let g(z) := \/Z be the square root function and define ¢ := min{3?, (p — ¢)?} and
r1 = max{5?, (p — q)?}. The function g(z) is continuous on the interval [xq,z1], since
xo > 0. Observe that |z1 — x| = 2r(p + q) + r? by equation (4.7). Applying the Mean
Value Theorem gives us

- 1| 1
5—(—q)= 5 ‘96 2| [2r(p+q) + 1.

We have to bound the two terms on the right hand side. Using inequalities (4.7) and (4.8)
yields

1
r>20>(p—q)?+2r(p+q) > Z(P—Q)Z-

Therefore we have %|ﬂf%| < p—iq. In order to bound the second term, we observe that

2_P—4q 11 1
re < r<-Nir<—(p+q)r.

Therefore, we bound the second term by

N

P=9(p+q) < (p—gNi.

9 9
2 2l < 2 < Z
’7"(]9-1‘(1)‘1‘7”’_4’7”\(174‘61)_16 1 5
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Putting the inequalities for both terms together, we obtain

~ 1
15— (p—q)| < N1,

[\CY GV

which proves the lemma.

Let us finally summarize the whole algorithm which leads to the factorization of the
modulus.

/ Algorithm Generalized Wiener-Attack \
INPUT: (N,e), where N = pq
1. Construct the lattice L with basis B.
2. Find a shortest vector v = (¢, c1) - B € L using Gauss reduction.
3. Compute (x0,y0) = (|c1|, |coN + cie]) and k = |co].
4. Compute s = %2 +2v/N and § = V52 — 4N.

mith’s - ~ +3
5. Run Coppersmith’s Algorithm (Theorem 11) on input *3=.

OUTPUT: p,q

N /

Since every step in the Algorithm Generalized Wiener-Attack can be done in poly-
nomial time, this concludes the proof of Theorem 20. &

4.4 An application — Cryptanalysis of the YKLM-scheme

“It is the peculiar beauty of this method, gentlemen, and
one which endears it to really scientific mind, that under no
circumstance can it be of the smallest possible utility.”

Henry John Stephen Smith (1826-1883)

At ICISC 2001, Yen, Kim, Lim and Moon [73, 74] presented an RSA-type scheme
(briefly called the YKLM-scheme) that was designed to counteract the so-called Bellcore-
attack by Boneh, DeMillo and Lipton [11] on CRT-RSA. CRT-RSA is an RSA variant,

where the signature generation is done using the Chinese Remainder Theorem (CRT).
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Boneh, DeMillo and Lipton showed that whenever exactly one of the signature compu-
tations either modulo p or modulo ¢ is faulty, the signature reveals the factorization of
N in polynomial time.

The idea of Yen, Kim, Lim and Moon was what they called "fault infective computa-
tion”: In their scheme, the computations modulo p and q are designed to depend on each
other such that either both computations are correct or both computations are faulty.
This should prevent the Bellcore-attack.

Unfortunately, Yen, Kim, Lim and Moon need a special RSA key generation process
in order to make their scheme efficient. Their public key e satisfies a relation with some
small parameters that will be described later. The efficiency of the YKLM-scheme relies
on the fact that these parameters are indeed much smaller than the modulus N. It was
raised as an open question by the authors whether one could use random public keys e
as well in their scheme by maintaining the same performance.

We show that the public keys constructed in the YKLM-scheme satisfy the conditions
of Corollary 22, i.e., for every public exponent e we have ew + z = 0 mod ¢(N) with
small w and z.

Let us first review the modified key generation algorithm in the YKLM-scheme.

RSA Key Generation in the YKLM-scheme

Modulus : Randomly choose two primes p and g of the same bit-size and com-
pute the product N = pq.

Small parameters : Fix a bound B, where B <« N. Randomly choose e, and r in
{1,..., B} such that ged(e,, p(N)) = 1.

Compute d, = e, ! mod ¢(N).

Secret exponent : Compute d = d, +r. If ged(d, p(N)) # 1, choose different parame-
ters e, and r.

Public exponent : Compute e = d~! mod ¢(N).

Public parameters: Publish the tuple (V,e).

The authors of the YKLM-scheme pointed out that instead of the public key tuple
(N, e) one could even publish the parameters e, and r as well. The next theorem shows
that the parameters e, and r immediately reveal the factorization of V.

Theorem 26 Given (N, e,e.,r), the factorization of N can be found in probabilistic
polynomial time in the bit-length of N.
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Proof: Consider the public key equation ed — 1 = 0 mod ¢(N). The secret key d has a
decomposition into the unknown part d, and the known parameter r

e(dr +7r)—1=0mod ¢(N).
Multiplication with e, removes the unknown parameter d,
e(l +er) — e, = 0mod p(N).

Since every parameter on the left hand side is known, we can compute a multiple k¢ (V)
of the Euler function

e(l1+er)—e. =kop(N) for some k € N. (4.9)

By a straight-forward generalization of Theorem 2, such a multiple k¢(N) yields the
factorization of N in probabilistic polynomial time in the bit-length of V.

Certainly, there is no need to publish the small parameters e, and r in the YKLM-
scheme. On the other hand, the Wiener attack does not apply to the public key (N, e),
since the construction of d ensures that d is large: In order to be an inverse of e, < B,
d, must be of size at least @ and thusd =d, +r > @.

However, d has a special structure. It is close to some d,, which has a small inverse
e, modulo ¢(N). We see by equation (4.9) that e thus satisfies a congruence

ew + z = 0 mod ¢(N),

with the small parameters w = 1 + e, and z = —e,. Therefore, we can apply our Gen-
eralized Wiener attack of Section 4.3. The following corollary follows from Corollary 22.

Corollary 27 Let (N,e) be a public key tuple constructed by the key generation process

i the YKLM-scheme with p—q > ¢N2 for some ¢ < 1. Furthermore, let e, and r satisfy

the conditions ) )
14+er< gN% and  e; < 1—60N%.

Then N can be factored in time polynomial in log(N).

Proof: In order to be able to apply Corollary 22, it remains to show that 1—160Ni <
%CN_%G(l + e,r). Using equation (4.9), we conclude that

1 1 1
ch_%e(l +er) > ch_%¢(N) > 1—60]\/%,

which proves the claim.
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Since the efficiency of the YKLM-scheme relies on the fact that e, and r are very small
compared to N, Corollary 27 breaks the YKLM-scheme for all reasonable parameter
choices.

This result is — besides the Wiener and Boneh-Durfee attack — another warning to
crypto-designers in order to be careful when using secret keys of a special structure in
the RSA key generation process, especially if only small parameters are used to generate
the keys. The secret key d must not be small itself in order to yield the factorization. If
the corresponding public key e satisfies a modular relation ew + z = 0 mod ¢(N) with
small unknowns then this suffices to find the factors p and q.

4.5 There are N1—¢ weak keys

“Seek simplicity, and distrust it.”
Alfred North Whitehead (1861-1947)

Let us first recall our definition of weak keys (Definition 15).

Definition 15 Let C be a class of RSA public keys (N,e). The size of the class C
is defined by
sizec(N) = [{e € Zyny | (N, €) € C}.

C is called weak if:
1. sizec(N) = Q(N7) for some v > 0.

2. There exists a probabilistic algorithm A that on every input (N, e) € C outputs the
factorization of N in time polynomial in log(N).

The elements of a weak class are called weak keys.

In Section 4.3, we showed that every public key tuple (N,e) that satisfies a relation
ew + z = 0 mod ¢(N), with

o(N) N
e p—q

1 —
and |z] < giu .

¢(N) Ni

yields the factorization of N in polynomial time. Therefore the Generalized Wiener At-
tack from Section 4.3 defines a weak class C' — notice that sizec(N) must be polynomial

0<w< (4.10)

W =

1
in N since C contains as a subset the N17¢ weak keys from Wiener’s attack. The main
question we will study here is, how large our weak class C' is.

Question: What size has the weak class C of the Generalized Wiener Attack?
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What bounds can we expect for sizec(N)? As a first estimate, we can sum over all
tuples (w,z) within the bounds given by the inequalities in (4.10). This gives us an
upper bound on the size of C. Therefore, we have at most

3\ 2 5 5

. 1 /¢(N) N1 1 e p—q 1 Ni Ni
sizec(N) < | = = = — =0 —— 4.11
ol )_<3 e p—q> 86(N) N3 T2p—g (p—q> ()

weak keys for every fixed N. This is an upper bound on sizec(N), since:
e Different tuples (w, z) might define the same public exponent e.

e Some of the tuples (w, z) do not even define a legitimate public exponent e, i.e., a
*
key e € Z S(N)*
Instead of an upper bound on sizec(NN), we are more interested in a lower bound. Namely,
we want to know the minimal number of public exponents e € Z; Ny that yield the
factorization for some fixed modulus N. This section is dedicated to the proof of a lower
bound for sizec (V).
As a result we obt?in that our lower bound almost perfectly matches the upper
bound. If p — ¢ = Q(N117), v > 0, we obtain a lower bound of

-
sizec(N) = Q <N4 > ,

p—q

where € > 0 is arbitrarily small for N suitably large.

Llet us have a closer look at this result. In the standard RSA case, we have p — ¢ =
Q(Nz) which implies a bound of

sizec(N) = Q <N%76)

weak RSA key tuples (N, e) for every fixed N.

On the other hand, we know that Fermat’s factcl)rization algorithm yields the fac-
torization of N in polynomial time if p — ¢ = O(N7). But the number of weak keys
for p —q = Nit7, 0 < v < 1is Q(N'777¢). This means that the number of weak
keys scales almost perfectly with the prime difference p — q. We have an interpolation
property towards Fermat factorization: As p — ¢ decreases, more and more key tuples
are weak and as v approaches zero almost all keys are weak. This corresponds to the
fact that for v = 0, all tuples (IV, e) are weak because one can find the factorization of
N in polynomial time without any further information that is encoded in e.

We will now prove the lower bound result, where we use the following main lemma.
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Lemma 28 Let f(N,e), g(N,e) be functions on RSA public keys (N,e) such that

FA(N,e)g(N,e) < ¢(N), f(N.e) =2 and g(N,e) < f(N,e).

The number of public keys e € Z;(N), e > @ that satisfy an equation ew + z =

0 mod ¢(N) for w < f(N,e) and |z| < g(N,e)w is at least

fAN,e)g(N, e)

2 €
8log log?(N?2) — O(F (N, e)N),

where € > 0 is arbitrarily small for N suitably large.
Using Lemma 28, we can immediately prove our lower bound theorem.

Theorem 29 Letp—q = N+ with 0 < v < i. Let C' be the weak class that is given by
the public key tuples (N, e), where e satisfies a relation of the form ew+z = 0 mod ¢(N)
such that w, z satisfy the bounds of (4.10). In addition, we restrict the public exponents

to e € 7% with e > ¢ Then

B(N) T4
N
) N =Q ————— .
sizec(N) <1oglog2<N2>>

3
Proof: Using the bounds of (4.10), we define f(N,e) := % @é\% and g(N,e) :=
1 e p—q
53N N1
J2(N, )g(N, ) < 6(N), (N, ¢) > 2 and g(N,e) < f(N,e).
Using (4.11), we see that

In order to satisfy the requirements of Lemma 28, we have to show that

5
1 Nz 1
2
N Nje) = —— < —=N N).
Since e < ¢(N) and p — g < N%, we observe that f(N,e) = Q(Ni). Thus, f(N,e) > 2
for sufficiently large V.
Finally, g(N,e) < f(N,e) imposes the condition

Njw

e

which is satisfied since e < ¢(N) and (p — q)?> < N.
Now we can apply Lemma 28. Since g(N,e) = Q(N7), the term
5

f2(N.e)g(N.e)

8loglog?(N?) domi-

nates the error term O(f2(N,e)N€). Using f2(N,e)g(N,e) = 7—12% and p—q = Nt

proves the claim.

We obtain the following corollary immediately.
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Corollary 30 Let C be the weak class that is given by the public key tuples (N,e),
where the public exponent e € Z¢(N), e > @ satisfies a relation of the form ew + z =
0 mod ¢(N) such that w, z satisfy the bounds of (4.10). Then

3

Nz
' N)=Q ———————1.
sizeo(N) <loglog2(N2)>

It remains to prove Lemma 28. Let us first recall the preconditions: Throughout the
proof, f(N,e) and g(N,e) will be functions such that f2(N,e)g(N,e) < ¢(N), f(N,e) >
2 and g(N,e) < f(N,e). We will use the shorthand notations f and g for f(N,e) and
g(N,e), respectively. We consider public keys that satisfy a relation ew + z = k¢(N) for
some k € 7, where the parameters w and z satisfy the bounds w < f and |z| < gw.

First, we note that looking for such e > d)( ) that satisfy an equation of the form
ew + z = k¢(N) for arbitrary k is equivalent to looking for arbitrary e that satisfy an
equation of the form ew + z = k¢(IN) for reasonably large k.

Lemma 31 Assume e € N satisfies ew — z = k¢(N) for w < f, |2| < gw, and k > (%1,
then e > @.

Proof: Using our preconditions on the functions f and g, we observe that

N
2| < gw < gf < % < ¢(N).
Hence ew = k¢(N) + z > (k — 1)¢(IN). Now the bounds k > % + 1 and w < f imply
e > Lo(N) > 28,

Roadmap of the proof

We define a set T' which is a union of pairwise disjoint subsets T'(k). Each subset T'(k)
consists of tuples (w, z) — w, z within the given bounds — such that

e Every (w, z) € T'(k) defines a public key e € Zig(ny With ew + z = kp(N).
e Different (w,z) € T' (not only in T'(k)!) define different public keys e.
2
o [T > ng(m) —O(f*N°)
Let us define the sets T'(k) and their union 7.
Definition 32 For every fited N and for every k € 7 define the set

- o k:<w<f,|Z|SQUJ,
T(k) := {(w,z) €N Z‘ z = k¢(N) mod w, ged(w, kp(N)) = 1,ged(z,p(N)) =1 } '
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Further define

T:=u . T(k).

k=441

The following lemma shows that each tuple (w, z) € T'(k) defines a public exponent
e € ZZ(N) of the desired form.

Lemma 33 For every tuple (w,z) € T(k) there is an e € Zy(N)* such that ew + z =
kp(N).

Proof: Since z = k¢(IN) mod w by Definition 32, there exists an integer e such that
ew + z = ko(N).
Using 0 < k < w and |z| < gw < gf? < #(N), we obtain

kp(N) — =z - kE¢(N) — z

O<e= w - kE+1

< ¢(N).
Finally, since ged(z, ¢(NV)), we have

ged(ew, 9(N)) = ged(kp(N) — z,¢(N)) = 1,

and therefore ged(e, ¢(N)) = 1, which concludes the proof.

Next we want to show that different tuples (w, z) lead to different public keys.

Lemma 34 Let (wp, z9) and (wy,z1) be two different tuples from T. Then they define
distinct public exponents.

Proof: According to Lemma 33, there exist eg,e; € ZQ(N) such that eqwg + zg =
0 mod ¢(N) and ejw; + 21 = 0 mod ¢(N). Assume for contradiction that ey = e;. This
implies

20— 2L 1mod 6(N).

wo w1
Note that the fractions are well-defined since ged(wp, ¢(N)) = 1 and ged(wq, p(N)) =1
by Definition 32.

Equivalently we can write
zow1 = zywp mod ¢(N). (4.12)

But wg,w; < f and zp,z; < g. This implies that both products in the identity above
are smaller than fg < o) < @ in absolute value. Thus, the identity even holds over

the integers and not just modulo ¢(IV).
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By Definition 32, all the tuples (w, z) € T'(k) satisfy the relations z = k¢(N) mod w
and ged(w, ¢(N)) = 1. This implies

ged(w, z) = ged(w, ko(N)) = 1.

Thus, we have ged(wp, z9) = 1 as well as ged(wq, 21) = 1. We conclude that wy = wy
and zp = z; in equation (4.12), which is a contradiction. Therefore ey # e; and the
claim follows.

It remains to derive a lower bound for |T'|. Our goal is to provide a lower bound for
the size of the sets T'(k). If the sets T'(k) are pairwise distinct then |T'| can be bounded
by Z£ i |T'(k)|. The pairwise distinctness is proven in the following lemma.

=1

Lemma 35 If k # [ then T'(k) NT(1) = 0.
Proof: Assume for contradiction that (w, z) € T'(k),T'(I) for k # [. Then
z=ko¢(N)modw and z=I¢p(N)mod w.

Since ged(w, ¢(N)) = 1, we can divide both equations by ¢(N). We conclude that
k =1lmod w. But k,I < w by Definition 32 and therefore k = [ over the integers, con-
tradicting the assumption k # [.

In order to provide a lower bound for |T'(k)|, we fix the parameters N, k and w
and sum over all z in T'(k). The following technical lemma from the area of analytic
number theory gives us a bound for the number of integers z that meet the requirements
of Definition 32. Since we want to apply the lemma for different variable settings, we
give it in a general form and introduce new parameters [, and u. To understand the
connection to the definition of T'(k), the reader can substitute the variables [, by the
left and right bound —gw and gw, respectively. The variable u can be substituted by
ko(N) in the following lemma.

Lemma 36 Let N, w € N with ged(w, p(N)) = 1. Let l,r,u € Z be arbitrary. The set
{z€Z |l<z<r,z=umodw and gcd(z,¢p(N)) =1}
contains at least
1 r—1
2loglog(6(V)) w

elements, where € > 0 is arbitrarily small for suitably large N.

— O(NY)
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Proof: To prove Lemma 36 we need the Moebius p-function. For m = pips - - pr € N,
P1,---,Pr prime, it is defined as

1. u(1) =1
2. pu(m) = (—1) if all the primes py,...,py are different.
3. p(m) = 0 otherwise

Let z9 € Zy, be the unique integer that satisfies zyp = v mod w.

Then z, [ < z < r satisfies z = v mod w iff z is of the form zy + tw with l_% <t<
=20, A divisor d of ¢(NN) divides zo + tw iff + = —22 mod d. Note that the inverse of
w modulo d exists since w € Z ). In the interval (l 20 I—20] there are at least ||
numbers of this form. By the inclusion-exclusion principle we conclude that the number

we are looking for is at least

Zﬂ(d)er;lJ _ Z r—l_ Z r—lmoddw

d|p(N) d|¢(N) d|$(N)
—1
s - 2 Iud)
d|$(N) d|¢(N)
u _ o(6W)) P(o(N)) !
Since Z = o) and ) > 2Tog log(6(V) for N large enough, we

r—1 1
> MG Sty w2 O

d|p(N)

Finally we use the fact that Z lu(d)] = O(¢°(N)) = O(N°€) for all € > 0 (see [1]).
d|$(N)

If we set w = 1, we obtain

Corollary 37 Let N € N and l,r € Z. The number of integers z with | < z < r and
ged(z, ¢(N)) =1 is at least

r—1
2loglog(¢(NN))

where € > 0 is arbitrarily small for suitably large N.

- O(NE)a

We are now able to prove a lower bound for |T| = Zk - |T(k)|.
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Lemma 38 Let g, f be as defined in Lemma 28. Then

T > e ___ O(f*N°)
~ 8loglog?(N?) ’

where € > 0 is arbitrarily small for suitably large N.

Proof: From Lemma 36 we conclude that for fixed NV, k£ and w the number of z €
Z,|z| < gw such that (w,z) € T(k) is at least

fogtogv) ~ O
Hence
f ! !
ok o= Y Y <1oglfg<N>_O(N€)>
Nt =0 e ko N) =1

f f
A > > 1| —oAm)Ne.

Applying Corollary 37 shows that for ¢ > 0 arbitrary small and N large enough
f

f—k
1> — O(N°).
w%;l ~ 2log log(kp(N)) o)
ged(w,kg(N))=1
Hence
/ f /
f—k
1 > — O(fN*
; _Zkﬂ - ; 2log log(kN) (FN)
P ged(wok(N))=1 =at
1 S
> - _ €
— | 2loglog(N?) l;) g ON
2
=  Bloglog(N?) O(fN )
Since g < f, the lemma follows.
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5 Unbalanced RSA with Small
CRT-Exponent

“Problems worthy of attack,
prove their worth by fighting back.”
Anonymous

5.1 Introduction

In Chapter 4, we studied classes of weak keys (IV, e) in RSA. Weak keys give an attacker
enough information to factor N in polynomial time. The practically most important
class of weak keys is the one introduced by Wiener [71] (see Section 4.2): If the secret
key d corresponding to (IV,e) satisfies d < %N T then (N,e) is a weak key. This class
was extended by Boneh-Durfee [12] (see Section 7.2) to all d with d < N%292 using
Coppersmith’s heuristic method for solving modular bivariate polynomial equations.
The importance of these classes comes from the fact that the decryption/signature
process in RSA requires the computation of m? mod N. The cost of computing this term
is (9(logdlog2 N). Hence, one might by tempted to use small exponents d in order to
speed up the decryption/signature process. Assume a situation where a device with poor
computational power (e.g. a smart-card) has to compute signatures frequently, whereas
the validation of the signatures is done by a high-speed computer. It is preferable to
perform the largest amount of the computation on the fast device by choosing a large
public exponent e with corresponding small secret exponent d. Unfortunately as shown
by Boneh-Durfee, this leads to a completely insecure scheme whenever d < N9292,
These results show that one cannot use a small decryption exponent d in RSA in order
to speed up the decryption process. On the other hand, Wiener’s and Boneh-Durfee’s
attack do not affect the security of the fast Quisquater-Couvreur decryption variant (see
Section 2.1): One can use a decryption exponent d such that d, := d mod p — 1 and
dg := d mod ‘12;1 are both small!. Such an exponent d is called a small CRT-exponent in
the following. In order to sign a message m, one computes m® mod p and m% mod q.
Both terms are combined using the Chinese Remainder Theorem to yield the desired

'Here we use the term q%l instead of ¢ — 1, since we will later need in our key generation process that

the moduli p — 1 and %1 are coprime
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Introduction: Unbalanced RSA with Small CRT-Exponent

term m? mod N. The attacks of Wiener and Boneh-Durfee do not work in this case,
since d is likely to be large.

It is an open problem if there is a polynomial time algorithm that breaks RSA if
d, and d,; are small. This problem is mentioned several times in the literature, see
e.g. [9, 12, 71]. The best algorithm that is known runs in time O(min(y/d,, \/dg)) which
is exponential in the bit-size.

Goal: Find polynomial time attacks for (IV, e) with corresponding small CRT-exponent.

In this chapter, we give the first polynomial time attacks on RSA with small CRT-
exponent. Unfortunately, our results are restricted to the case of unbalanced prime
numbers p and ¢g. The use of unbalanced primes was first proposed by Shamir [60] to
guard the modulus NV against different kinds of factorization algorithms and to speed up
the computations in RSA.

There are also other systems that use unbalanced primes. In 2000, Modadugu, Boneh
and Kim [52] proposed an easy RSA key generation protocol on an untrusted server by
using unbalanced primes. At Asiacrypt 1999, Sun, Yang and Laih [66] introduced an
RSA-variant with unbalanced primes p and ¢ that was designed to counteract the Wiener
and Boneh-Durfee attack. Interestingly, it turns out that the use of unbalanced primes
in their scheme even decreases the security. At Asiacrypt 2000, Durfee and Nguyen [28]
showed that a variant of the Boneh-Durfee attack works for larger exponents d than the
original attack if the prime factors are unbalanced. The Durfee-Nguyen approach breaks
the Sun-Yang-Laih scheme in two out of three of the suggested parameter settings.

We show in the following chapter that there is also a decrease in security for unbal-
anced primes when using small CRT-exponents. The more unbalanced the prime factors
are, the larger are the CRT-exponents that can be attacked by our methods.

Let ¢ < NB. We show in Section 5.2 that an RSA public key tuple (N,e) with
corresponding d,, satisfying the condition

1-33

N2

1
d, < =
P=2
yields the factorization of N in time O(log?(N)). Since for 8 >

N becomes negative, this method only works provided that ¢ < N3. In terms of the
notation of Chapter 4, the new attack gives us a class of weak keys of size Q(N E ).

Our approach is based on Coppersmith’s technique [20] in the modular multivariate
case (see Section 3.4). More precisely, we use a modular bivariate polynomial equation
with a small root. This root gives us the factorization of N. Using Howgrave-Graham’s
theorem (Theorem 14), we turn the modular bivariate polynomial into a polynomial
f(x,y) over Z such that the desired small root must be among the roots of f(z,v).
Interestingly, for our polynomial f(x,y) we are able to prove that this small root can be

extracted easily. This shows that our method provably factors the modulus N. Note that

the exponent of

Sool—
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this is in contrast to many other approaches using the multivariate method [3, 12, 28, 37]
which rely on the resultant heuristic.

The attack in Section 5.2 uses a two-dimensional lattice. In Section 5.3, we generalize
our method to lattices of arbitrary dimension. This improves the condition above to

dp < N1_352+B2 ¢

for some arbitrary small error term e > 0. Therefore, this approach works as long as
8 < 377‘/5 = (52 ~ 0.382, where (5 = 1*2\/5 is the conjugate of the golden ratio. Again,
we can show that the desired root can be extracted in polynomial time. This yields a
rigorous method for factoring V.

In Section 5.4, we use a different modular bivariate polynomial. Unfortunately, this
time we cannot give a rigorous proof for the method. It relies on Coppersmith’s resultant
heuristic for modular multivariate polynomials.

This approach works for larger CRT-exponents than our first attack. It is applicable

whenever

4, < N1 ORI

For the parameter choice 5 > %, the exponent of N becomes negative. Hence, the

method works only for ¢ < N %, which is slightly worse than the previous bound N°382,
But note that for 3 — 0 the method works for almost all d,. This means that the number
of weak keys (N, e) approaches N when the prime factors are completely unbalanced.
This seems to be a natural result: One expects that factoring N becomes easier when
the prime factors are more unbalanced. However, this intuition does not hold for all
known factorization algorithms. For instance, the running time of the asymptotically
best known factorization algorithm — the Number Field Sieve — does not depend on
the size of the smallest prime factor but on the size of V.

Interestingly, our approaches only make use of the fact that the prime factors are
unbalanced and that d, is suitably small. They do not require that the value d, =
d mod qg—l is chosen to be small, which is a reasonable choice in order to speed up the
Quisquater-Couvreur method. Contradicting to our intuition, small values of d, do not
yield better bounds in our attacks. This raises the question whether it is possible to
derive attacks with improved bounds that can profit from small values of d, as well.
Does this lead to attacks on RSA with small CRT-exponent even in the case of balanced
primes? At the moment, this is an open question.

Key generation using the Chinese Remainder Theorem (CRT)

We briefly describe the key generation process when using the Quisquater-Couvreur
method with unbalanced prime factors. In our scenario, the RSA modulus NV is composed
of a large prime factor p and a small prime factor ¢q. The secret decryption exponent d
is chosen to be small modulo p — 1 and of arbitrary size modulo ¢ — 1.
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CRT Key Generation Process

Fix a bit-size n for the public key modulus N. Additionally, fix two positive parameters
B,éwithﬁﬁ%andégl.

Modulus: Randomly choose prime numbers p and ¢ with bit-sizes approximately (1—3)n
and (n, respectively. Additionally, p — 1 and % must be coprime. Compute the
modulus N = pq. If the smaller prime factor ¢ does not satisfy ¢ < N?, repeat the
prime generation.

Secret exponent: Choose a small secret d, € Z;_; such that dj, < N?. Choose another

secret d, € Z%_, arbitrarily.

2

Chinese remaindering: Compute the unique d mod W) hat satisfies d = dp, modp—1

2
and d = d, mod %.

Public exponent: Compute the inverse e of d in Z7y, .
2

Public parameters: Publish the tuple (V,e).

In this chapter, we study the following problem.

Question: Up to which parameter choices for 3 and § does the public key tuple
(N, e) yield the factorization of N?

Note that the decryption and the signature generation process of a message m are very
efficient for small 3 and ¢. Since d,, is small, the computation of m% mod p — 1 requires
only a small number of multiplications. Furthermore, the computation of m% mod q;—l
is cheap because ¢ is small. Both terms can easily be combined to yield the desired term
m? mod @ using the Chinese Remainder Theorem (CRT).

In the next section, we will show that given the public key (N, e) there is a provable
polynomial time algorithm that factors N if the condition d, < %N 5 holds. This
implies that our method works as long as 8 < é The smaller [ is chosen, the larger
values of d,, can be attacked. For # = 0, we obtain d, < %\/N . Later, we will improve

the bound for § up to 3_2‘/5 ~ 0.382 (see Section 5.3) and for d, up to almost all d,
when [ is suitably small (see Section 5.4).
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5.2 An approach for g < N3

In this section, we prove the following theorem.

Theorem 39 Given an RSA public key tuple (N,e) with N = pq and secret exponent
d. Let ¢ < N? and

dp < ENI_;’B
2
Then N can be factored in time O(log?(N)).

Before we prove Theorem 39, let us illustrate our result in Figure 5.1. Let § :=

logx(d,) denote the size of d), in terms of the size of N. The area under the graph is

the feasible region for our attack. We see that § — % as the prime factors get more and

more imbalanced. On the other hand, our attack does not work for g > %

0.5
0.4
0.3
0.2

0.1

o 01 02 03 0.4

B

Figure 5.1: The approach for ¢ < N3

Proof.  Assume we are given a public key (N, e) that is constructed according to the
CRT Key Generation process of Section 5.1. We know that

ed, = 1mod p — 1.
Thus, there is an integer k£ € N such that

edy—1=k(p—1) overZ. (5.1)
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We can rewrite this equation as
ed, + (k—1) =kp (5.2)

In the following, we assume that ¢ does not divide k. Otherwise, the right hand side of
the equation is a multiple of N and we can obtain much stronger results. This case will
be analyzed later (see Theorem 43).

Equation (5.2) gives us the polynomial

folz,y) = ex+y
) = (dp, k — 1) modulo p.

Yo
1-38 . . _ _
N2 . By construction, we have d, < X. Since e < W,

with a root (xg,

Let X =
further obtain

1
3 we

k=1 < |k =

ed, — 1 ed, q—1
d, < N°X. .
_1'<p_1< 5 < (5.3)

Let Y := NPX denote this upper bound. Then, we have a modular bivariate poly-
nomial equation f, with a small root (zg,yo) that satisfies |xo| < X and |yo| < Y. This
modular equation can be turned into an equation over the integers using Howgrave-
Graham’s theorem (Theorem 14). We recall the theorem for the special bivariate case
that we need in the following.

Theorem 40 (Howgrave-Graham) Let f(x,y) be a polynomial that is a sum of at
most two monomial. Suppose

(1) f(xo,y0) = 0mod p, where |xg] < X and |yo| <Y

1
() 1 @X.g¥)] < Lop
Then f(xg,y0) = 0 holds over the integers.

Using our polynomial f,(z,y), we want to construct a polynomial f(z,y) that sat-
isfies both conditions of Howgrave-Graham’s theorem. We use the auxiliary polynomial
fo(x) = Nz that also has the root xp modulo p, since N is a multiple of p. Therefore, ev-
ery integer linear combination of fy and f, has the root (zg,yo) modulo p. We construct
a lattice L, that is spanned by the coefficient vectors of the polynomials fo(zX) and
fp(zX,yY'). These coeflicient vectors are the row vectors of the following (2 x 2)-lattice
basis B).

NX
By = [ eX Y }
The following lemma shows that the lattice L, always contains a vector v with norm

smaller than %. Since L is a two-dimensional lattice, we can find v using the Gauss

reduction algorithm (see [58]). The vector v can then be transformed into a polynomial
f(z,y) satistying f(zo,y0) = 0 over Z.
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Lemma 41 L, contains a smallest vector v with |v| < %.

Proof: By Minkowski’s theorem (Theorem 3), L, must contain a vector v with |v| <
\/2det(Ly,). Thus, v has norm smaller than <= if the condition

V2
p
2det(L,) < —=
(Lp) 5
holds. ,
Utilizing det(L,) = NXY gives the condition NXY < Z-. Plugging in the values X =

1-33

%N > and Y = NPX this condition can be further transformed into

2
NXY = NI+Ax2 — %NQ_% < pz.

Since ¢ < NP, we know that p > N'=#. Thus the condition is satisfied and the claim
follows.

Assume we have found a vector v in L, with norm smaller than % by Gauss reduc-

tion. Let v be the coefficient vector of the polynomial f(zX,yY). Applying Theorem 40,
we know that f(z,y) has aroot (zo,y0) = (dp, k—1) over the integers. The next theorem
shows that the root (x,y0) can easily be determined when v is represented in terms of
the basis B,,.

Lemma 42 Let v := (co,c1)- By be a shortest vector in L, with |v| < %. Then |co| = k
and |c1| = qdp.

Proof: We have v = ¢g(NX,0) + ¢1(eX,Y). Define the polynomial f(zX,yY) that

has the coefficient vector v. By construction, |f(zX,yY)| < % and we can apply

Theorem 40.
Therefore, the polynomial

f(z,y) = coNz + ci(ex +y)
has the root (x¢, ) over Z. Plugging (x¢, o) into the equation yields
coNzy = —c1(exp + yo).
We know that (xq,y0) = (dp,k —1). That leads to

coNd, = —ci(ed, + (k —1)).
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Using equation (5.2) and dividing by p gives us
coqd, = —c1k.

Since we assumed that ¢ does not divide k, we have ged(qd,, k) = ged(dp, k). Now, let
us look at equation (5.1). Every integer that divides both d), and k must also divide 1.
Hence, ged(d,, k) = 1.

Thus, we obtain

co=ak and ¢ = —aqd,
for some integer a. But v is a shortest vector in L,. Therefore, we must have |a| = 1
and the claim follows.

In the previous analysis, we made the assumption that ¢ does not divide k. If we are
in the very unlikely case that k& = ¢r for some r € Z, then we obtain analogous to the
reasoning before the following stronger result.

Theorem 43 Given an RSA public key tuple (N,e) with N = pq and secret exponent
d. Let g < NP,

1 1
k=qr and dp§ZN¥.

Then N can be factored in time O(log?(N)).

Proof: We only sketch the proof, since the reasoning is completely analogous to the
proof for the case where ¢ does not divide k.

The polynomial f,(x,y) = ex + y has the root (zg,yo) = (dp, k — 1) not just modulo
p but also modulo N. Thus, we can use the modulus N in Theorem 40. Analogous

to Lemma 41, we conclude that L, has a shortest vector v with norm smaller than %

provided that d, < %N =
Following the proof of Lemma 42, we see that v = (cg,¢1) - By with |¢p| = 7 and

le1| = dp. Since Ed”T_l = q(p — 1) by equation (5.1), the computation gcd(ed”_l,N) =q

T
reveals the factorization.

Interestingly, choosing G = % in Theorem 43 gives us the bound d, < iN i, which is

similar to Wiener’s bound in the attack on low secret exponent RSA (see Section 4.2).

Let us briefly summarize the whole factorization algorithm of Theorem 39.

84



Improving the bound to ¢ < N©-382

/Algorithm (Mod p)-Attack for unbalanced RSA with small CRT-exponent dp\

1-38

INPUT: (N,e), where N = pg with p > N'=% and d,, < %N 2

1. Construct the lattice basis B, of L.
2. Find a shortest vector v = (cg,¢1) - By in L, using Gauss reduction.

3. If ged (NN, |e1|) > 1, compute ¢ = ged(N, |e1]) and p = %. (Case: ¢ does not
divide k)
eler]—1

4. Else compute g = ged(N, o] ) and p = %. (Case: ¢ divides k)

OUTPUT: p,q

\ /

The total running time for Gauss reduction and greatest common divisor computations
is O(log?(N)). This completes the proof of Theorem 39. <&

5.3 Improving the bound to q < N0-382

Using Theorem 39, our approach with the two-dimensional lattice L,, only works provided

that ¢ < N 5. In this section, we use lattices of larger dimensions to make our method
work for less unbalanced moduli. We are able to improve the bound up to

3=v5
qg< N 2 ~ N3

In Section 5.2, we used Howgrave-Graham’s theorem (Theorem 14) for bivariate
polynomials for the special case m = 1, which gave us a two-dimensional lattice. Here,
we generalize our approach by allowing arbitrary m.

The rest of the section is devoted to the proof of the following theorem.

Theorem 44 For every fized € > 0 there exists an integer Ny such that for every N > Ny
the following holds:
Given an RSA public key tuple (N,e) with N = pq and secret exponent d. Let ¢ < N

and
1-38482

d, <Nz

Then we can find the factorization of N in time polynomial in log(N).
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Improving the bound to ¢ < N©-382

Before we prove Theorem 44, let us illustrate our improved result in Figure 5.2. As
before, we denote by ¢ := logx(d,) the size of d,, in terms of the size of N. The area
under the graph is the feasible region for our attack. For comparison we also draw in
Figure 5.2 the line from our result in the previous section.

0.5
0.4
0.3
0.2

0.1

o 0.1 02 03 0.4

B

Figure 5.2: Improving the bound to ¢ < NY-382

Proof. Let fy(x,y) := ex + y be defined as in Section 5.2, i.e., f, has the root
(x0,Y0) = (dp, k — 1) modulo p. Furthermore, let ¢ := 1_3274'62
Theorem 39, we know that |zg| < N° and |y| < NO*9.

Define the z-shifted polynomials
G j (@, y) = NXOM=D gl f7 (3 ).

Note, that every integer linear combination of polynomials g, ;; has the root (xg,yo)
modulo p™.

Let us define the bounds X := "THN5 and Y := ”T“Nﬁ”. Furthermore, we fix a
lattice dimension n. Next, we build a lattice L,(n) of dimension n using as basis vectors
the coefficient vectors of g, ;;j(zX,yY) for j = 0...n—1and ¢ = n—j — 1. The
parameter m is a function of n and must be optimized.

For example, take n = 4 and m = 2. The lattice L,(n) is spanned by the row vectors
of the following (4 x 4)-matrix

— €. From the proof of

N2X3

eNX3 NXZ2Y

e2X?  2eX2%Yy XY?
e3X3  3e2X?Y 3eXY? Y3

Bp(4) =
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Improving the bound to ¢ < N©-382

Note, that the lattice L, of Section 5.2 is equal to Ly(2).

In order to apply Howgrave-Graham’s theorem (Theorem 14), we need a coefficient
vector v with norm smaller than p%. The following Lemma shows that we can always

find such a vector in L,(n) using L3-reduction.

Lemma 45 On input B,(n), the L3-reduction outputs a vector v € L,(n) with norm
smaller than pﬁ, where m is a function of n.

Proof: An easy computation shows that

2

m(m n(n— —1 m(m n(n—
(m) CES (n—|—1>n(n )N (mth) | (25+45) nlnL)

det(Ly(n)) = N (XY) 2 5 Tz

for m < n. By the L3-theorem (Theorem 4), the L3-algorithm will find a vector v in
Ly(n) with
ol <27 det(Ly(n))™.

Using p > N' 78, we must satisfy the condition

N{A=B)m
Vn

We plug in the value for det(L,(n)) and obtain the inequality

2"T det(Lp(n))%

IN

NP e 2 ¢ N (-fymn

o -n
where the factor ¢ = <(2_%(n+ 1))" 1\/ﬁ> does not depend on N. Thus, ¢ con-

tributes to the error term e and will be neglected in the following.
We obtain the condition
m(m + 1)
2

n(n —1)

+ (26 + ) 3

—(1—=p8)mn <0.

Using straightforward arithmetic to minimize the left hand side, one obtains that m =
(1—f)n is asymptotically optimal for n — co. Again doing some calculations, we finally
end up with the condition § < % — ¢, which is satisfied by construction. This
concludes the proof.

Now, we can use the above Lemma 45 in combination with Howgrave-Graham’s theo-
rem (Theorem 14) to construct a bivariate polynomial g(z,y) with at most n monomials
and root (xg,y0). The problem is how to extract the root (xo,yo).
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Improving the bound to ¢ < N©-382

Analogous to Lemma 42, one can show for a vector v = (c1,¢g,...,¢y,) - Bp(n) with
norm smaller than pﬁ that £ divides ¢; and d,, divides ¢,. But we may not be able to
find these factors k and d, easily.

Therefore, we use another method to obtain the root. This method is described in
the following lemma.

Lemma 46 Let X := "THN‘S andY = "T‘HNB+5. Let f,(x,y) = ex+y be a polynomial
with root (x0,y0) modulo p that satisfies |xo| < N°, |yo| < NB¥9. Let v be a vector in
L,(n) with norm smaller than pﬁ, where v 1is the coefficient vector of a polynomial

g(xX,yY"). Then, the polynomial

h(x’y) = Yo — Ty € Z[x,y]

must divide g(xz,y). We can find h(z,y) by factoring g(z,y) over Q[z,y].

Proof: The point (zg, o) is a root of f,. For every integer a, the point (azg, ayo) is also
a root of f,. Every root (azo,ayo) with |a| < 2
layo| <Y of Howgrave-Graham’s Theorem. These are at least n + 1 roots. According
to Howgrave-Graham’s theorem, g must contain these roots over Z.

satisfies the conditions |azy| < X and

But these roots lie on the line y = g—g:c through the origin. Hence, they are also roots
of the polynomial

h(z,y) = yox — zoy € Zlz,y.

Note, that h is an irreducible polynomial of degree 1 and f is a polynomial of degree n.
Using the Theorem of Bézout (see [59], page 20), either g and h share at most n points
or h must divide g. But we know n+ 1 common points of g and h. Thus, the polynomial
h must divide g.

Since h is irreducible, we can find an integer multiple b’ = (byg)z — (bzg)y of h by
factoring g over Q[z,y]. Note that ged(zg,yo) = 1 since by equation (5.2) we know that
ged(dp, k — 1) must divide kp, but ged(d,, kp) = ged(dp, k) = 1. Hence, we obtain h by

. o h/
computlng h = m

Summarizing the results in this section, we obtain the following factorization algorithm.
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/Improved (Mod p)-Attack for unbalanced RSA with small CRT-exponent dp\

1-38+82

INPUT: (N,e), where N = pg with p > N'"% and d, < N~ 2 €

1. Fix an integer n (depending on %) and construct the lattice basis B, (n) of
L,(n).

2. Apply the L3-algorithm to By(n). Let v be a shortest vector that is found be
the algorithm.

3. Construct from v the corresponding polynomial g(z,y). Factor g(z,y) over

Qlz,yl.
b

4. For every irreducible factor h(z,y) of the form az + by: Compute z¢ = 2d(@h)

and yg = ﬁa,b) and test whether

e gcd(N,exg + yo) = p (Case: ¢ does not divide k) or
e gcd(N,yo+1)=¢q (Case: ¢ divides k).

OUTPUT: p,q

\ /

It is known that the factorization of the polynomial g(z,y) € Q[z,y] can be done in
(deterministic) time polynomial in log(NN) (see [32, 38]). Note that the coefficients of
g(x,y) must be of bit-size polynomial in log(p) since the coefficient vector of g(x X, yY)
has norm smaller than %. This concludes the proof of Theorem 44. &

In practice, the factorization of polynomials over Qz,y| is very fast. Thus, our
method is practical even for large n.

5.4 An approach that allows larger values of d,

Throughout this section, we assume that e is of the same order of magnitude as N. The
results in this section as well as the results in Sections 5.2 and 5.3 can be easily general-
ized to arbitrary exponents e. Analogous to the results of Wiener [71] and Boneh-Durfee
for small secret exponent RSA, the smaller the exponent e is, the better our methods
work. On the other hand, one can completely counteract the attacks by adding to e a
suitably large multiple of ¢(V).
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An approach that allows larger values of d,

Since we use in the following Coppersmith’s resultant heuristic for modular bivariate
polynomial equations, our approach is heuristic as well. However, the only heuristic
part consists of the assumption that a certain resultant computation yields a non-zero
polynomial. In order to state our result as a theorem, we assume that this resultant
computation never fails.

Assumption 47 The resultant computation in the method of Theorem 48 never yields
a non-zero polynomial.

We carried out several experiments that support our assumption: We could not find an
example where the resultant was zero.

Theorem 48 Under Assumption 47, for every fived ¢ > O there exists an integer Ny
such that for every N > Ny the following holds:

Given an RSA public key tuple (N,e) with N = pq and secret exponent d. Let ¢ < N
and

dy < N1-3(B+/36+6%)—¢
Then we can find the factorization of N in time polynomial in log(N).

Proof. Let us reuse the equation ed, — 1 = k(p — 1) and rewrite it as
(k=1 —1)+p=edp,.
Multiplying with ¢ yields
(k=1(N =q) + N = edpq

This gives us the polynomial
fe(yaz) = y(N - Z) + N

with a root (yo,20) = (k — 1, ¢) modulo e.

Let§:=1-— %(ﬂ + /38 4 32) — €. Then we can define the upper bounds Y := N#+9
and Z := N”. Note that |yg] < Y (see inequality (5.3)) and |z9| < Z. Analogous to
Section 5.2, we can define a three-dimensional lattice L. that is spanned by the row
vectors of the (3 x 3)-matrix

B. := eY
N NY -YZ
Using a similar argumentation as in Section 5.2, one can find a vector v € L, with norm

1-38 —e

smaller than the bound % of Howgrave-Graham’s Theorem provided that d, < N2

Hence as before, this approach does not work if 5 > é or d, > N 3. Tn Section 5.3, we
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An approach that allows larger values of d,

used z-shifted polynomials to improve the bound for 5. Now, z-shifted polynomials will
help us to improve the bound for d, up to d, < N'=¢ (for 3 — 0), or for 8 up to 8 < %
(for d, — 0).

Fix an integer m. Let us define the y-shifted polynomials
93 (y,2) ="y fily, )
and the z-shifted polynomials
hii(y, 2) = €72 fily, 2).

All these polynomials have the common root (yo,z9) modulo e™. Thus, every integer
linear combination of these polynomials also has the root (yo, 20).

We construct a lattice L.(m) that is defined by the span of the coefficient vectors of
the y-shifted polynomials g; ;(yY, 2Z) and h; ;(yY,2Z) for certain parameters i,j. We
take the coefficient vectors of g; ; for all non-negative 7, j with ¢ + j < m and the coef-
ficient vectors h; j for i =0...m and j = 1...¢ for some t. The parameter ¢ has to be
optimized as a function of m.

For example, choose m = 2 and ¢t = 1. We take the coefficient vectors of go 0, go,1,
91,0, 90,2, 91,1, g2,0 and the coefficient vectors of hg 1, h1,1, ho,1 to build the lattice basis
Be(2):

e2
e?Y
—eN eNY —eY 7
e2Y?
—eNY eN2Y? _—eY?2Z
N2 —2N2Y 2NYZ N2?2Y? _9NY?2Z Y272
e2Z
eNY Z —eNZ —eY Z?
—9N?2Y 7 N2Y2%2z —2NY?Z? N2Z 2NY Z? Y2Z3_

The row vectors of B.(2) span the lattice L(2).

In order to apply Theorem 40, we need a vector in L.(m) with norm smaller than

%(). The following lemma shows that we can find two sufficiently short vectors
im Le(m

using L3-reduction.
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Lemma 49 On input B.(m), the L3-algorithm outputs two vectors vy, vy € Le(m) with
norm smaller than e

\/dim Le(m)
Proof: A straightforward computation shows that

det Le(m) = ( ey)%(2m3+(6+3t)m2+(4+3t)m) Z%(m3+(3+3t)m2+(2+6t+3t2)m+3t+3t2)‘

Let t :=7m and e = N'=°(), Using Y = N#*% and Z = N?, we obtain

det Le(m) = N6 (B+6+1)(24+37)+B8(1+37437)+o(1))

Analogous to the reasoning in Lemma 45, we apply the L3-theorem (Theorem 4) and
obtain the condition

det L.(m) < e N (1—o(1))m dim Le(m),

where ¢ does not depend on N and contributes to the error term e. An easy calculation
shows that dim(L) = w + t(m + 1). We plug in the values for det L.(m) and
dim L.(m). Neglecting all low order terms yields the condition

382 +2r+1)+6(37+2)—37r—-1<0
for m — oo. Using elementary calculus to minimize the left hand side, we obtain an

optimal choice for the value 7 = 17327‘5. Plugging in this value, we finally end up with
the condition

5 1-2(5+ V35T PP,

which is satisfied by our construction. This concludes the proof of Lemma 49.

Using Lemma 49, we can apply Howgrave-Graham’s theorem (Theorem 14) and
obtain two polynomials fi(y, z), f2(y,z) with the common root (yg, z9) over Z. But in
contrast to the previous sections, we are not able to give a rigorous method to extract
this root. Instead, we follow the resultant heuristic due to Coppersmith.

We take the resultant of f; and fo with respect to y. The resultant r(2) is a poly-
nomial in z that has the root zp. By Assumption 47, r(z) is not the zero polynomial.
Thus, we obtain the unknown zy = ¢ by applying standard root finding algorithms to
r(z).

We summarize our results in the following factorization algorithm.
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Comparison of the methods

/ (Mod e)-Attack for unbalanced RSA with small CRT-exponent d, \

INPUT: (N,e), where N = pg with p > N'=% and d,, < N1=5(B+/35+5%)—¢

1. Fix an integer m and construct the lattice basis By(m) of Ly,(m).

2. Apply the L3-algorithm to B,(m). Let vy, v2 be the shortest vectors that are
found by the algorithm.

3. Construct from vy, vy the corresponding polynomials f1(y, z), f2(y, z) and com-
pute 7(2) = resy(fi, f2). If r(z) = 0 output “Failed”.

4. For every root zy of r(z): Test whether zy = g and % =p.

OUTPUT: p,q

N /

The running time of the algorithm is polynomial in log(N'), which concludes the proof
of Theorem 48. &

We do not know if our lattice based approach yields the optimal bound. But there
is a heuristic argument that gives us an upper bound for our method when using the
polynomial f.(y, z).

Assume that the function h(y, z) = y(N — z) mod e takes on random values in Z,. for
ly] <Y and |z| < Z. Every tuple (y, z) with h(y,z) = —N mod e is a root of f.. The
expected number of those tuples is Q(X£) = Q(N?T9-1). As soon as 2346 —1 is larger
than some positive fixed constant, the number of small roots satisfying f. is exponential
in log(N). All these roots fulfill the criteria of Howgrave-Graham’s Theorem. But we
require that our polynomials only have poly(log(/N)) many roots in order to extract the
desired root in polynomial time.

Thus heuristically, we cannot expect to obtain a bound better than d, < N 1-28
using the polynomial f.. This implies that this approach cannot be used for the case of
balanced RSA, where g = %

It is an open problem if one can really reach this bound.

5.5 Comparison of the methods
We compare the methods introduced in Section 5.3 and Section 5.4. Let ¢ := logy(d,)

denote the size of d), in terms of the size of V. In the figure below, we plotted the maximal
d as a function of 3 for which our two approaches succeed. The first method (Section 5.3)
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is represented by the line § = % resulting from Theorem 44. The second approach

(Section 5.4) gives us the curve 6 = 1 — %(B + /30 + 3?) by Theorem 48. The areas
below the curves represent the feasible region of parameter choices for our attacks. We
see that our second method yields much better results for small 3.
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Figure 5.3: Comparison of the methods

One might be tempted to combine the two approaches and use the polynomials
ez fp(z,y) and N - fe(y, ) in a single lattice basis (i.e., working modulo eN'). However,
such a lattice will always contain an extremely short coefficient vector corresponding to
the polynomial f(x,y,2) = exz + y(N — z) — z over Z. But this polynomial can be
obtained by multiplying equation (5.1) with ¢ and does not help us any further. It is an
open problem if there is a successful way to combine the methods.
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6 Knowing A Fraction of the Secret Key
Bits

“The joy of suddenly learning a former secret and the joy of
suddenly discovering a hitherto unknown truth are the same
to me — both have the flash of enlightenment, the almost
incredibly enhanced vision, and the ecstasy and euphoria of
released tension.”

Paul R. Halmos

6.1 Introduction

In the previous chapters, we studied weak keys (IV,e) in RSA. All of our weak keys had
the common property that e satisfied a relation with small unknown parameters modulo
®(N) (Chapter 4) or modulo p— 1 (Chapter 5). This enabled us to compute either p+ ¢
or p from (N, e) in polynomial time, which in turn lead to the factorization of N. But
what can an adversary do if (N, e) does not happen to be a weak key? How can he gain
information about the factorization of N7

We know that the secret key d satisfies the relation ed = 1 mod ¢(N). Thus, if an
attacker succeeds to get bits of d, he also obtains useful information about ¢(/N). Assume
that he gets d completely, then he can factor N immediately using the randomized
algorithm of Theorem 2. But the interesting question is whether he really needs to know
all of the bits of d or just a (small) fraction of the secret key bits.

Question: When does a fraction of d provide enough information to factor N?

This question was introduced by Boneh, Durfee and Frankel [14] in 1999. In addition
to its important theoretical interest, this is a very natural question arising from the
intensive research efforts in cryptanalysis considering side-channel attacks on RSA (e.g.
timing attacks, fault attacks, power analysis (see for instance [41, 42])).

Motivation: Side-Channel Attacks
In many adversary scenarios, an attacker using a side-channel attack either succeeds
to obtain the most significant bits (MSBs) or the least significant bits (LSBs) of d in
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consecutive order. Whether he gets MSBs or LSBs depends on the different ways of
computing an exponentiation with d during the decryption process.

Let dndp—1...dy be the binary representation of d. We briefly sketch two different
variants of the Repeated Squaring Method, which was introduced in Section 2.1. After-
wards we give an example how a side-channel attack might work in order to recover bits

of d.
K Algorithm UP \

INPUT: m,N,d = dpdy_; ... do

1. Set z :=1.
2. Fori=0ton

a) If (d; = 1) set z:= z-mmod N
b) Set m :=m? mod N.

\OUTPUT: 2 =m%mod N

/
K Algorithm DOWN \

INPUT: m, N,d = dpdy_; ... do

1. Set z :=1.
2. Fori=nto0

a) Set z:= 22 mod N.
b) If (d; = 1) set z := z-m mod N

\OUTPUT: z=m%mod N /

Algorithm UP has the invariant that in the ith execution of its loop (1=0,...,n), the
intermediate result m>i=02'% ig computed. Similar, we have in Algorithm DOWN the
loop invariant that in the i** execution (i = 0,...,n), we obtain the intermediate result
mZ?:n—i 2j7(nii)dj X

Our goal is to show that in a reasonable fault model an attacker can successively
obtain the MSBs of d if Algorithm UP is used. This is a result due to Boneh, deMillo
and Lipton [11]. Blomer and Otto [8] showed that an attacker can also get the LSBs in
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consecutive order if the computation is done according to Algorithm DOWN. However
here, we want to focus just on the first case.

Assume that an attacker can ask a decryption device to sign an arbitrary message
m. Furthermore, he is able to induce a single bit fault in the register that holds the
variable z during the i** execution of the loop. He has no control of the position of the
faulty bit, but he has an exact control of the loop iteration i by timing his attack.

We want to show that in this case, the attacker can successively determine the MSBs
of d. Assume that he has already determined the bits d,, ...d;11 and he wants to get
the bit d;. Therefore, he induces a bit fault in the (i — 1) loop execution. We know by
the loop invariant that up to this step, the register for z holds the intermediate result
ng;é 2dj. Now, we get an additive fault of +2°, where b is the unknown bit position
of the fault. The remaining computation is a multiplication with m2=i=i 4% Hence, the
faulty signature S’ has the form

5 — <m2§;5 2d; 4 Qb) - mZi=%2 mod N.
Therefore, S’ differs from the correct signature m® by the term
S —m? = +2'm> = 4% mod N.

Notice that we can guess the term on the right-hand side, since there are at most [log V|
possibilities for the choice of b and we already know the bits d,, ...d;+1. Therefore, we
just have to guess one more bit d;. One can test whether the guess is correct by checking
that

<S/ + 2bm =i dj2j>e =m mod N.

The attack described here is just an example of a possible side-channel attack on RSA.
There are many others attacks that determine consecutive bits of d. Therefore we think
that it is reasonable to focus on the case where an adversary gets either MSBs or LSBs
of d, and we ignore attacks where an adversary has to recover both sorts of bits or
intermediate bits.

Some side-channel attacks are able to reveal a fraction of the secret key bits, but may
fail to reveal the entire key (see [27]). For instance, the adversary might be restricted
to a limited number of queries to the decryption device. In another reasonable scenario,
an attacker might get bits only with a certain probability, but — similar to our example
above — the probability that d; is correct depends on the probability that the attacker’s
hypothesis of d, ...d;1+1 is correct. Hence, it gets harder and harder for him to recover
additional bits. Therefore, it is essential to know how many bits of d suffice to discover
the whole secret information d or equivalently the factorization of V.

Beside the theory of these side-channel attacks, it is an important theoretical question
which security level an n-bit secret exponent really provides. It is also an interesting
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relaxation of the factorization problem: Without knowing bits, we assume that factoring
is hard, which means that we do not expect the existence of a polynomial time algorithm
for the problem. But with a sufficiently large fraction of the bits of d the problem becomes
efficiently solvable. Hence, one can view a known fraction of d as a hint how to factor.

The results of Boneh, Durfee and Frankel
Surprisingly, in the case of LSBs, Boneh, Durfee and Frankel [14] showed that for low
public exponent RSA (e.g. e = poly(log N)) only a quarter of the bits of d are sufficient to
find the factorization of IV in polynomial time. Their method makes use of Coppersmith’s
theorem for known LSBs of p (Theorem 12): Given half of LSBs of p, the factorization
of N can be found in polynomial time.

Let us state the result of Boneh, Durfee and Frankel for known LSBs of d.

Theorem 50 (BDF: LSBs) Let N = pq be an n-bit RSA modulus with N = 3 mod 4
and let e < %Ni. Given the

g LSBs of d,
then N can be factored in time polynomial in log(N) and e.

Considering knov;m MSBs of d, Boneh, Durfee and Frankel present an algorithm that
works for e < N2, again using Theorem 12. Here, the performance of the attack sub-
stantially depends on the fact whether one knows the factorization of e or not.

Theorem 51 (BDF: MSBs) Let N = pq be an n-bit RSA modulus.
1. Suppose e is a u-bit prime in the range [Ni,N%]. Given the
u MSBs of d,

then N can be factored in time polynomial in log N.

2. Suppose e is a ul—bz't roduct of r distinct primes with known factorization and e is
in the range [N1, N2]. Given the

u MSBs of d,

then N can be factored in time polynomial in log N and 2".

3. Suppose e < NZ is a u-bit number of unknown factorization. Further, suppose that
d > eN for some € > 0. Given the

n —u MSBs of d,

then N can be factored in time polynomial in log N and %
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4. Suppose e < N2 is a u-bit number of unknown factorization. Further, suppose that
d>eN and |p—q| > eV N for some € > 0. Given the

zn MSBs of d,

then N can be factored in time polynomial in log N and %

The last result (Theorem 51, 4.) is not explicitly mentioned in the original work [14]
of Boneh, Durfee and Frankel but can be easily derived from another work by the same
authors (see [15]).

It was raised as a challenging open question in the paper of Boneh, Durfee and
Frankel whether there are polynomial time1 algorithms that find the factorization of N
for values of e substantially larger than N2 given only a subset of the secret key bits.
The answer of this question is our first goal in this chapter.

Goal 1: Suppose e > Nz, find the factorization of N using only a fraction of d.

In this chapter, we provide algorithms for both cases MSBs and LSBs when e > N3,
Here is a brief overview of the results that we obtain.

MSBs of d known:
We present a method that works for all public exponents e in the interval [N %,N 0.725],
The number of bits of d that have to be known increases with e. Let us provide some
numerical examples of the required bits: For e = N°® one has to know half of the MSBs
of d, for e = N5 a 0.71-fraction suffices whereas for e = N%6 a fraction of 0.81 is
needed to factor N.

In contrast to Boneh, Durfee and Frankel, we do not use Coppersmith’s theorem
for known bits of p. Instead we directly apply Coppersmith’s method for finding roots
of modular trivariate polynomial equations (see Section 3.4). Since the method relies
on the resultant heuristic in the multivariate case, our result is a heuristic as well.
However, we provide various experiments that confirm the heuristic’s reliability: None
of our experiments failed to yield the factorization of .

In Figure 6.1 we illustrate our result for MSBs. The size of the fraction of the bits
that is sufficient in our attack is plotted as a function of the size of the public exponent
e. We express the size of e in terms of the size of N (i.e., we use logy(e)). For a
comparison with previous results, we also include in our graphs the results of Boneh,
Durfee and Frankel. The marked regions in Figure 6.1 are the feasible regions for the
various approaches.

Note that the area belonging to Theorem 51 (1. and 2.) requires that the factorization
of e is known.
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Figure 6.1: The results for known MSBs of d.

LSBs of d known:

We stalrt by proving a result for all but a negligible fraction of the public exponents
e < N2. In contrast, the result of Boneh, Durfee and Frankel (Theorem 50) leads to a
polynomial time algorithm only for exponents e of the order poly(log N). Our approach
uses a 3-dimensional lattice to find the factorization of N using a single lattice basis
reduction, whereas the method of Theorem 50 requires about e lattice reductions. We
tested our attack with the frequently used RSA exponent e = 26 + 1. Our algorithm is
very fast but requires more bits of d than the method in Theorem 50.

Interestingly, our approach makes use of the linear independence of two sufficiently
short vectors in the lattice and we do not need to apply Coppersmith’s heuristic in this
case. This makes our method rigorous and at the same time introduces a new method
how to solve modular multivariate polynomial equations of a special form, thereby pre-
venting the resultant heuristic.

In the next step, we generalize the 3—dimensi9nal approach to multi-dimensional
lattices. This improves the bound up to all e < N8, which is the largest known bound
for e in partial key exposure attacks on RSA. Unfortunately, since our attack relies on
the resultant heuristic, it becomes a heuristic as well. But again in our experiments, we
could not find a single failure of the resultant heuristic. The results are illustrated in
Figure 6.2 in the same fashion as before.

Our new results raise the question whether it is possible to derive methods that work
for all keys e < ¢(N)? In the light of our new bounds, this goal does not seem to
be out of reach. Maybe a modification of our lattices could already suffice (e.g. using
non-triangular lattice bases, see Chapter 7).
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Figure 6.2: The results for known LSBs of d.

Known bits in CRT-variants:

In addition to the previously mentioned results, we provide results for attacking RSA
when the Chinese Remainder Theorem (CRT) is used for the decryption process. As
mentioned in Chapter 2, it is common practice to use the Quisquater-Couvreur method
in order to speed up RSA decryption by a factor of approximately four. There also
exist other fast CRT-RSA variants that make use of the values dj, := d mod p — 1 and
dq := d mod ¢ — 1 like for instance Takagi’s scheme, which additionally uses a modulus
of the form p"q (see also Section 6.6).

Fast CRT-RSA variant are especially interesting for time-critical applications like
smart-cards. On the other hand, it is well-known that smart-cards are vulnerable to
many side-channel attacks, since an attacker who is in possession of the smart-card has
many opportunities to manipulate the computations. However, it has never been studied
in literature how many bits of d, (or symmetrically of d,) suffice to find the factorization
of N.

Goal 2: Find the factorization of IN using only a fraction of the bits of d,,.

We provide provable attacks for both cases: LSBs and MSBs. Interestingly, in our
proofs we use the more general variant of Coppersmith’s Theorem for MSBs of p (The-
orem 10) that was introduced in Section 3.2: The knowledge of an approximation of kp
for some (unknown) k up to an additive error of N 1 suffices to factor N in polynomial
time.
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We prove that for low public exponents e (i.e., e = poly(log N)), half of the LSBs of
d, always suffice to factor N. Therefore, the attack is a threat to RSA implementations
with the commonly used public exponents e = 3 and e = 2'6 4+ 1. Note that half of the
bits of d), is only an amount of a quarter of the bits of N and thus the result is as strong
as the best known partial key exposure attacks.

In the case of known MSBs of d,, we present an algorithm that even works for all
e < Niin polynomial time. Again for low public exponent RSA, it requires only half of
the MSBs of d,, in order to factor N. The fraction of bits of d,, that is sufficient for the
attack increases linearly with the bit-size of e. The results are illustrated in Figure 6.3.

Detailed overview
We briefly overview all known polynomial time partial key exposure attack in Figure 6.4
by giving the precise functions of the bits that have to be known. Here, we denote by
a :=logy(e) the size of e in terms of N.

It is worth noticing, that the new partial key exposure attacks on RSA-variants with
CRT are the first rigorous methods that do not require any further restrictions.

Extensions to moduli of the form IV = p"q
We also investigate public moduli N = p"q for some constant r > 1. Moduli of this
form have recently been used in different cryptographic designs. Fujioke, Okamoto and
Uchiyama [30] presented an electronic cash scheme using a modulus N = p?q. Okamoto
and Uchiyama [54] further designed an elegant public key cryptosystem that is provably
as secure as factoring a modulus N = p?q.

A very fast CRT-RSA variant using moduli of the form N = p"q was introduced by
Takagi [67] in 1998. The larger one chooses r, the more efficient is Takagi’s scheme. On
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Figure 6.4: Detailed summary of the results

the other hand, Boneh, Durfee and Howgrave-Graham [67] showed in 1999 that moduli
of the form N = p"q are more susceptible to attacks that leak bits of p. Generalizing
Coppersmith’s result, they showed that it suffices to know a fraction of TJ%I of the MSBs
of p to factor the modulus (see Chapter 3, Theorem 13). We study how many bits of d
(respectively of d,) suffice in order to find the factorization of N in polynomial time.

Goal 3: Find the factorization of N = p"q using only a fraction of the bits of d
(respectively the bits of dy).

Takagi [67] extended Wiener’s attack for low secret exponents d and showed a bound

1
of d < N2r+1). We propose two new rigorous methods based on Coppersmith’s method
for finding small roots of univariate modular polynomial equations. The new approaches
improve Takagi’s bound to

d< Nei0? or d< NG

for r > 2. The first new bound is the best bound for the choice » = 2, whereas the
second new bound improves upon the previous ones for r > 3. Note that the last bound
tends to NV for r — oco. Therefore the larger r is chosen, the fewer bits of d have to be
known by an attacker.

Both new attacks possess interesting properties which the Wiener attack and the
Boneh-Durfee attack do not share:

e One cannot counteract the attacks by choosing large public exponents e.
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e The attacks immediately yield partial key exposure attacks. Namely, it makes no
difference in the attacks whether the MSBs of d are zero (and thus d is a small
decryption exponent) or are known to the adversary. In addition, the new partial
key exposure attacks also do not depend on the size of e. These are the first attacks
that work for arbitrary e.

Using the first attack, we are able to prove that a fraction of

T of the MSBs or LSBs of d

(r+1)2
suffice to find the factorization of N = p"q. The second attack yields partial key exposure
attacks that require only a fraction of

4r

W of the MSBs or LSBs of d
r

in order to factor .

Since many schemes — such as for instance Takagi’s scheme — with moduli N = pq
do not directly use the decryption exponent d but instead the value dj, :== d mod (p — 1),
partial key exposure attacks that use bits of d cannot be applied. Therefore, it is an
interesting task to derive partial key exposure attacks for known bits of d,, too.

In this case, we are able to generalize our partial key exposure attacks for d, with
moduli N = pq (see Section 6.5) to the general case N = p"q. Interestingly, the results
are again much better for » > 1. Namely, we show that there exists a rigorous attack
for known LSBs of d), that needs a fraction of

1
r+1

of the bits of d,.
Our new results show that moduli of the form N = p"q are more susceptible to
attacks that leak bits of the secret exponent than the original RSA scheme.

A note on the presentation of the results

We introduced the topic of partial key exposure attacks by assuming that an attacker
gets possession of a fraction of the secret key bits. This is a reasonable scenario coming
from various side-channel attacks. However, we point out that our new results as well as
the results of Boneh, Durfee and Frankel do not only cover the case of known bits but are
slightly more general. To be more precise: When we talk of & known LSBs of d, then in
fact an attacker needs to know integers do, M such that dy = d mod M, where M > 2F.
Thus, M = 2* is only the special case where he really knows the bits. Although we will
talk of known LSBs in the following chapters, we find it convenient to state our results
in the more general form using the parameters dy and M. There might be situations,
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where an RSA-variant does not leak the bits of d itself but the value dyg = d mod M for
some M. We present our results in a form such that they can be applied to this case as
well.

An analogous reasoning holds for the case of MSBs. An attacker does not really have
to know the MSBs of d but instead an approximation d of d such that |d — d| can be
suitably upper-bounded.

Throughout this chapter, we will assume that an RSA modulus N = pq is a product
of two primes of the same bit-size. From Section 2.1 we know that in this case

p+q<3VN.

V6—1

)

In this section, we present a polynomial time attack on RSA for public exponents e in
the interval [V 2 N g 1) given most significant bits of d. This answers an open question

of Boneh, Durfee and Frankel whether there exist partial key exposure attacks beyond
the bound e = v/N.

Our approach makes use of Coppersmith’s method for modular polynomial equations
in the trivariate case, which is a heuristic (see Section 3.4). The only heuristic part in
this method as well as in our attack is the resultant heuristic. The method fails iff one
of the resultant computations yields the zero polynomial. In order to state our results
as a theorem, we assume that this failure never happens.

6.2 MSBs known: A method for e € [N2, N

Assumption 52 The resultant computations for the polynomials constructed in this
section yield non-zero polynomials.

We made various experiments to support this assumption, and we never found a
counter-example.

Theorem 53 Under Assumption 52, for every fived ¢ > O there exists an integer Ny
such that for every N > Ny the following holds:
V61

Let (N,e) be an RSA public key, where o :=logy(e) is in the range [%, 5—]. Suppose

we are given an approzimation d of d with

\d — cﬂ < N&(5—2a-v36a2+12a-15)—c

Then N can be factored in time polynomial in log N.
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Before we start to prove Theorem 53, we want to provide some experimental results
in Figure 6.5 to give an impression of the amount of bits that is needed in our partial
key exposure attack (see also Figure 6.1). The experiments confirm the reliability of the
multivariate heuristic and support our Assumption 52.

Define § := % (5 —2a — V3602 + 12a — 15) —e¢. Then a fraction of 1—§ of the MSBs

of d is required (asymptotically) for the new attack. For o = 0.55 this is a 0.71-fraction
and for & = 0.6 we need a 0.81-fraction. The experiments shown in Figure 6.5 confirm
that one can get close to these bounds in practice by spending a reasonable amount of
computing time. All of our experiments were carried out on a 500-MHz workstation
using Shoup’s NTL [63].

N e known MSBs Lattice parameters L3-time
1000 bit 600 bit 955 bit m=t=1, dim(L) =7 1 sec
1000 bit 550 bit 855 bit m=t=1, dim(L) =7 1 sec
1000 bit 600 bit 905 bit m=t=2, dim(L) =19 40 sec
1000 bit 550 bit 810 bit m=t=2, dim(L) =19 40 sec
1000 bit 600 bit 880 bit m=t=3, dim(L) =50 57 min
1000 bit 550 bit 785 bit m=t=3, dim(L) =50 72 min

Figure 6.5: Experimental results for known MSBs

Proof. [Theorem 53]: We start by looking at the public key equation
ed—1=k¢(N), wherek € Z. (6.1)

Boneh, Durfee and Frankel [14] observed that a suitable fraction of the MSBs of d yields
the parameter k. The main drawback of the methods presented in [14] is that they all
require that k is known exactly. This restricts the methods’ usability to public exponents

eS\/N.
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Roadmap of the proof

e We relax the restriction of Boneh, Durfee and Frankel and show that an approxi-
mation of d yields an approximation k of k.

e We use the approximation & to construct a trivariate polynomial fy with a small
root (zo, Yo, 20) modulo N.

e Using Coppersmith’s method we compute three polynomials with the root (xg, yo, 20)
over the integers.

e We compute (z0,yo,20) over the integers using resultant computations. Under
Assumption 52, this will lead to the factorization of N.

Let us look at the case where we obtain only an approximation k of k from an approxi-

son I._ ed—1
mation d of d. Define k := S, then

ed—1 ed—1

Ik — k| = o(N)  N+1

Taking the common divisor on the right-hand side gives us:

(ed = 1)(N +1) — (ed = 1)(N + 1~ (p+4q))
¢(N)(N +1) '

Now, we can estimate

(p+q)(ed —1)
P(N)(N +1)

€

= o)

(N® + 3N~z24).

We claim that the hard case is the one where the term N~ 2d dominates N%. Let us
first assume the opposite, i.e., NO > N=3d. In this case, |k — l%\ can be bounded by
NotI=1 where we neglect low order terms. Hence whenever o + 6 — 1 < 0, then k
can be determined exactly. Note that the condition in Theorem 53 implies the desired
inequality 0 <1 — «.

BuE if k is known, we can compute p4+ ¢ = N + 1 + k~! mod e. On the other hand
e > N2 and therefore we get p + ¢ over the integers and not just modulo e. This leads
to t1h§ factorization of N. Hence we assume in the follqwing that we are in the case
N~2d > N°. In this case we can bound |k — k| by 4N®"2.

Now let us define dy := d—d and ko := k— k. Then we can reformulate equation (6.1)
as

e(d+do) — 1 = (k + ko)p(N).
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This can also be written as

edo + (k+ko)(p+q—1)+ed —1 = (k+ ko) N. (6.2)

Equation (6.2) gives us a trivariate polynomial

n(z,y,z) =ex+ (k+y)z+ed—1
with the root (zg,y0,20) = (do,ko,p + ¢ — 1) modulo N. Define the upper bounds

1

X :=N% Y :=4N°2 and Z := 3N2. Then we have 20 < X,yo <Y and 2y < Z.

Now we use Coppersmith’s method in order to construct from fxn(z,y, z) a polyno-
mial f(z,y,z) with the same root (z¢,yo,20) over Z (and not just modulo N). Let us
recall Howgrave-Graham’s theorem (Theorem 14) in the trivariate case:

Theorem 54 (Howgrave-Graham) Let f(x,y,z) be a polynomial that is a sum of at
most n monomials. Suppose that
(1) f(xo,y0,20) = 0mod N™, where |zo| < X, |yo| <Y and |z0| < Z

(2) /X, ¥, 22)] < 2.
Then f(zo,Y0,20) = 0 holds over the integers.

We construct polynomials that all satisfy condition (1) of Howgrave-Graham’s The-
orem. Thus, every integer linear combination of these polynomials also satisfies the first
condition. We search among these linear combinations for a polynomial f that satisfies
condition (2). This will be done using the L3-lattice reduction algorithm.

Let us start by defining the following polynomials g; ; x(x,y, 2) and h; ; i(z,y, 2) for
some fixed integers m and t:

gijr = RN fori=0,...,m;j=0,...,5k=0,...,]
hijk = aly"Nifut fori=0,...,m;j=0,....0:k=1,...,t

The parameter ¢ has to be optimized as a function of m.

One can build a lattice L(m) by using the coefficient vectors of the polynomials
Gi k(@ X, yY,2Z) and h; j (X, yY, 2Z) as basis vectors for a basis B(m) of L(m). We
provide an example for the case m = 1 and ¢ = 1, where the coefficient vectors of g1 9,0,
91,1,0, 911,15 90,0,0 and hi 0.1, h1.1,1, hoo,1 form (as row vectors) the following lattice basis
B(1).

- N -
NX
NZ

B(l)=|ed—1 eX kZ YZ

NY
NXY
kYZ (ed—1)Y eXY Y2Z |
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The following lemma shows, that the L3-algorithm always finds at least three different
vectors in L(m) that satisfy condition (2) of Howgrave-Graham’s Theorem.

Lemma 55 Let X := N°, Y := AN®"2 and Z := 3N 2. Then one can find three linearly

independent vectors in L(m) with norm smaller than —== m( ) using the L3-algorithm.
1m m

Proof: Let n := dim L(M) denote the lattice dimension. We want to find a reduced
basis of L(m) with three basis vectors smaller than N—\/%L Applying Theorem 4, we know

that for an L3-reduced basis {v],v}, ...,/

n(n—1)
[of] < Jubl < Juj] < 25072 det L(M)7=2,
Since we need |v| < N—:, we have to satisfy the condition

det(L) < eN™=2),

n(n—1) n—2 .
where ¢ =277 4 n "2 does not depend on N and therefore contributes to the error

term e.
Let ¢ := 7m, then the determinant of L(M) is

det L(M) = <N8T+3X4T+1yﬁ7'2+47'+1 Z4T+2> ﬁm4(1+0(1)) .

Using the bounds X = N%, Y = 4N®"2 and Z = 3N 2 we obtain
det L(M) = N2im'Br*Ca=l)+ir(d+at2)++a+3)(1+o(1)

An easy calculation shows that n = £m3(127+4)(1+0(1)). Neglecting low order terms,

our condition simplifies to

1
372(2a—1)+47(5+a—1)+5+a—5<O.

1-0—a
a—1 °

The left hand side minimizes for the choice 7 = % Plugging this value in, we

obtain the desired condition

1
5§§<5—2a—\/36a2+12a—15>

This concludes the proof of the lemma.

Combining Theorem 54 and Lemma 55, we obtain from the three vectors with norm

N™ . .
smaller than Wy three polynomials f1(z,v, 2), fa(z,y, z) and f3(x,y, z) with the
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common root (xg,yo, z0). Our goal is to extract the value zg = p + ¢ — 1. The equation
N = pq together with the number zy yields the factorization of N.

Therefore, we take the resultants res,(f1, f2) and res,(f1, f3) with respect to . The
resulting polynomials g; and g2 are bivariate polynomials in y and z. In order to remove
the unknown y, we compute the resultant resy, (g1, g2) which is an univariate polynomial
in z. The root zy most be among the roots of this polynomial. Thus, if res,(g1,g2) is
not the zero polynomial (Assumption 52 excludes this case) then zy can be found by
standard root finding algorithms.

Let us briefly summarize the whole factorization algorithm.

/ Algorithm MSB-Attack \

INPUT: - (N,e), where N = pq and d satisfies ed = 1 mod ¢(N)
— d with |d —d| < N (5-20—v 36a2+120‘_15)_5, where a = log v (e).

1. Fix an integer m (depending on 1) and construct the lattice L(m) with basis

B(m).
2. Find three vectors wvy,vs,v3 with norm smaller than L using L3-
dim L(m)
reduction.

3. Construct from vy, vy, v3 three polynomials fi(z,y, 2), f2(z,y, z) and f3(z,y, 2)
and compute the univariate polynomial h(z) = resy (res;(f1, f2),resz(f1, f3))-

4. Compute all the roots of h(z). For every root zg test whether the solutions of
the quadratic 22 — (29 + 1)x — N are the prime factors p, q.

OUTPUT: p.q

\_ /

Since m is a constant, L(m) has constant dimension and the entries in the basis matrix
B(m) have bit-size poly(log N). Therefore, the L3-algorithm runs in time polynomial
in log(N). Since vy,v9,v3 have fixed dimension, the polynomial h(z) has also fixed
dimension and its coefficients are bounded by a polynomial in N. Thus the roots as well
as the solutions of the quadratic are computable in polynomial time. This concludes the
proof of Theorem 53. &
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6.3 LSBs known: A provable method for e < Nz

In this section, we present a provable attack on RSA with public exponent ¢ < N %,
where we know dy = d mod M for some modulus M. For instance, assume that an
attacker succeeds to get the lower k bits of d, then M = 2F.

In the following we show that whenever M is sufficiently large, then N can be factored
in polynomial time for all but a negligible fraction of choices for e. As a by-product,
our proof provides an elementary method how to prevent resultant computations when
Coppersmith’s method is applied to multivariate polynomials of a simple form.

Theorem 56 Let N be an RSA modulus and let 0 < o,e < 1. For all but a O(5)-
fraction of the public exponents e in the interval [3, N®] the following holds: Let d be the
secret key. Suppose we are given dog, M satisfying d = dy mod M with

Notate < M < aNO+ate,
Then the factorization of N can be found in polynomial time.

Before we prove the theorem, we want to give some experimental results. We tested
our algorithm with the commonly used public exponent e = 2'6 41 and varying 1000-bit
moduli V, where we knew 525 LSBs of d. Note that in comparison to the Boneh-Durfee-
Frankel-approach for LSBs (see Theorem 50), we need about twice as many bits but in
their method one has to run about e times a lattice reduction. The running time of
our algorithm is about 1 second on a 500 MHz workstation. In 100 experiments, the
algorithm never failed to yield the factorization of V.

Proof. [Theorem 56] We start by looking at the RSA key equation ed — 1 = k¢(N). Let
us write d = dyM + dy, where dy is the unknown part of d. Then

ediM +k(p+q—1)—1+edy = kN. (6.3)
Equation (6.3) in turn gives us a bivariate polynomial
In(z,y) =eMz+y+ edy
with a root (xg,yo) = (d1,k(p+¢q—1) — 1) modulo N.
Roadmap of the proof

e We show that Coppersmith’s method can be used for all but a negligible fraction
of the public exponents e to construct two linear polynomials fi(x,y) and fo(z,y)
with the root (xg,yo) over Z, whose coefficient vectors are linearly independent.
In order to prove this, we have to show that a certain 3-dimensional lattice always
contains two sufficiently short, linearly independent vectors.
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e The common root (zg,y0) of fi and fy can then be computed using elementary
Gaussian elimination. The term (zg, o) leads to the factorization of N.

In order to bound gy notice that

ed—1 d
k= <e <e< N%.
¢(N) — o(N)
Since d; < %, we can set the bounds X := N2~ € and Y := 3N2+@ satisfying zo < X
and yo <Y.

We want to transform our polynomial fx(z,y) into two polynomials with the root
(z0,y0) over the integers. Therefore, we apply Howgrave-Graham’s Theorem (Theo-
rem 14) in the bivariate case. For this purpose we take the auxiliary polynomials N
and Nz which are both the zero polynomial modulo N. Thus, every integer linear
combination f = ayN + a1 Nz + azfn(z,y) has the root (z¢,yo) modulo N.

According to the second condition of Howgrave-Graham’s theorem we have to look for
integer linear combinations f satisfying | f(zX,yY)| < % Thus, we search for suitably
small vectors in the lattice L given by the span of the row vectors of the following
(3 x 3)-lattice base

N
B = NX
ed)y eMX Y
Now, our goal is to find two linearly independent vectors (ag, a1, az)B and (by, b1, by) B
both having norm smaller than % Since L has dimension 3, we can compute two
shortest linearly independent vectors in L in polynomial time using an algorithm of
Blomer [4]. In practice, the L3-algorithm will suffice.
Assume we could find two linearly independent vectors with norm smaller than %

Then we obtain from Theorem 14 the following two equations
aoN + a1 Nz + a2 fn(2o,50) = 0 and
boN + b1 Nz + b2 fn(20,0) = 0.

From equation (6.3) we know that fy(xo,y0) = kN. Hence, our equations simplify to
the linear system

a1xo +ask = —ag

bixg +bok = —bg (64)

Since (ag, a1, as), (bo,b1,bs) € Z3 are linearly independent and satisfy (6.4), we claim
that the 2-dimensional vectors (a1, az2), (b1, bs) are also linearly independent. Assume for
contradiction that ¢- (a1, as2) = (b1, be) holds for some ¢ € Q. Then

C- (alxo,agk) = (blxo, bgk) = C- (al.%'o + agk) = blxo + bgk,
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which implies that ¢-ag = bg. This leads to ¢- (ag, a1, a2) = (bo, b1, b2) contradicting the
assumption that the vectors are linearly independent.

The linear independence of (a1, ag) and (by,be) ensures that we can determine xg, k
as the unique solution of the linear system (6.4) by using Gaussian elimination. After-
wards, we can derive yo by yo = kN — eMzg — edy. Therefore, yoljl =p+q—1 gives us

the necessary term to factor the modulus N.

It remains to show that L contains indeed two linearly independent vectors with
norm smaller than % The following lemma proves that this is satisfied for most choices

of e using a counting argument.

Lemma 57 Given N,«, e and M as defined in Theorem 56. Then for all but O(N*~°)
choices of e in the interval [3, N®] the following holds: Let X := N3¢ qnd Y :=
3N2+Y Then the lattice L contains two linearly independent vectors with norm less

N
than ek

Proof: Let us first define the notion of successive minima (see for instance [58]). The
ith successive minimum \; of a lattice L is
A; := min {r | There exist ¢ linearly independent vectors in L with norm at most r} .

We have to show that for most choices of e the second successive minima Ay of L is
strictly less than % By Minkowski’s second theorem (see [33]), we know that for any

3-dimensional lattice L and its successive minima A1, Ao, A3
A A2 A3 < 2det(L).

In our case det(L) = N2XY. Hence for all e such that A\; > 6XY, we get Ay < % and

we are done.

Now assume \; < 6XY . Hence, we can find ¢y, 1, ca € Z such that ||(co,c1,c2)B] <
6XY . This implies

lea] < 6X  and

C1
=+
C2

eM 6Y
=/ <« =
N - N
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Using XY < 3N'~¢, the second inequality implies

18
cp X N€

c1 eM‘
Sy <
Cco N | —

(6.5)

Next we bound the number of €’s in [3, N®] that can satisfy (6.5) for some ratio ¢

Since e is positive, we can assume that ¢; < 0 and co > 0 without loss of generality.
Now we make the following series of observations.

1
e The difference between any two numbers of the form <5 is at least % > No 2t

e If (6.5) is true for some ratio ¢& and some e then % must lie in the interval
c 18 c1 + 18
c2 co XN€? ¢co co X N€ |

e Combining the first two observations we conclude that for a fixed ratio i—; there

are at most ——9—— public keys e such that (6.5) is satisfied.
CQXNa_ 3 +2e

e Since e < N%* and M < 2N2°‘7%+6, we get % < 9N20—gFe, Consider a fixed
but arbitrary co. Then (6.5) is satisfied for some ¢; and some public key e only if
c1 € [F2N203tec, 1],

e The previous two observations imply that for fixed ¢o the number of e’s satisfy-

ing (6.5) is bounded by %ﬁ

e The previous observation and ¢y < 6.X imply, that the number of public keys e for
which (6.5) is satisfied for some ratio & is bounded by 432N~

The last observation concludes the proof of Lemma 57.

Let us summarize the attack.
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/ Algorithm Rigorous LSB-Attack \

INPUT: - (N,e), where N = pq and d satisfies ed = 1 mod ¢(N)

~ do, M with dy = d mod M and N°+3+€ < M < 2N°+3%€ where o =
log v (€).

1. Construct the 3-dimensional lattice basis B of L and find two shortest, linearly
independent vectors vy = (ag,a1,a2)B,vy = (b, b1,b2)B € L using Blomer’s

algorithm.
2. Let |v1| < |ve|. If |ve| > %, then return “Failed”.
3. Solve the linear system
a1xg + ask = —ag
bixog +bok = —bg

in the unknown parameters g, k using Gaussian elimination.
4. Compute yg = kN — eMxy — edy.

5. Output the two solutions of the quadratic equation % — (yOTH + 1)z — N.

OUTPUT: p,q

\_ /

Every step of the algorithm can be done in polynomial time. This concludes the
proof of Theorem 56. &

6.4 LSBs known: A method for all e with e < N

In this section, we improve the approach of Section 6.3 by taking multi-dimensional lat-
tices. In contrast to Section 6.3 our results are not rigorous. They rely on Coppersmith’s
resultant heuristic for multivariate modular equations. As in Section 6.2, we make the
assumption that the only heuristic part of the computations in our method — namely
one resultant calculation — never leads to a failure of the approach.

Assumption 58 The resultant computation for the two polynomials constructed in the
method of this section yields a non-zero polynomial.
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We confirmed the reliability of Assumption 58 by various experiments: None of our
experiments has ever failed to yield the factorization of V.

Interestingly, the bound that we get in this section is even better than the bound
derived for known MSBs (see Section 6.2). Namely, we obtain an attack that works for

all e < N¥.

Theorem 59 Under Assumption 58, for every e > 0 there exists Ny such that for every
N > Ny the following holds:

Let (N,e) be an RSA public key with o := logy(e) < %. Let d be the secret key. Suppose
we are given do, M satisfying d = dy mod M with

M > N%Jr%\/ere.
Then N can be factored in polynomial time.

Before we start with the proof of Theorem 59, we provide some experimental results in
Figure 6.6 to given an impression of the number of bits that are sufficient in our partial
key exposure attack (see also Figure 6.2).

N e known LSBs Lattice parameters L3-time
1000 bit 300 bit 805 bit m=1,t=0, dim(L) =3 1 sec
1000 bit 300 bit 765 bit m="7t=1, dim(L) =44 405 min
1000 bit 400 bit 880 bit m=3,t=1, dim(L) =14 40 sec
1000 bit 400 bit 840 bit m=06,t =1, dim(L) =35 196 min
1000 bit 500 bit 920 bit m=4,t=1, dim(L) = 20 7 min
1000 bit 500 bit 890 bit m =8,t =2, dim(L) = 63 50 hours

Figure 6.6: Experimental results for known LSBs

Proof.  [Theorem 59] We start by looking at the equation ed — 1 = k¢(N). As in
Section 6.3, we write d = di M + dy. This gives us the equation

k(N = (p+q—1)) —edy+ 1 = eMdy. (6.6)
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From (6.6) we obtain the bivariate polynomial

feM(Z/,Z) :y(N—z) —€d0+1

with the root (yo,z0) = (k,p + ¢ — 1) modulo eM. Analogous to Section 6.3 we can
derive the bounds Y := N® and Z := 3Nz satisfying yo <Y and 2y < Z.
Fix some integers m and t. Define the polynomials

Gij = yj(eM)i emM_’ fori=0,...,m;5=0,...,i
hij = Z(eM)'fh;" fori=0,...,m;j=1,...,t

e

The parameter t has to be optimized as a function of m.

Since all the polynomials have a term (eM)? :Lﬂ/fi, all integer linear combinations of
the polynomials have the root (yp, z9) modulo (eM)™, i.e., they satisfy the first condi-
tion of Howgrave-Graham’s theorem (Theorem 14 in the bivariate case). Let L(m) be
the lattice defined by the basis B(m), where the coefficient vectors of g; ;(yY,2Z) and
hij(yY,2Z) are the basis vectors of B(m) (with the same parameter choices of i and j
as before).

In order to fulfill the second condition in Howgrave-Graham’s theorem, we have to

find a vector in L(m) with norm less than \/%.

The following lemma shows that one can always find two sufficiently short vectors in
L(m) using the L3-algorithm.

Lemma 60 Let e, M be as defined in Theorem 59. Suppose Y := N¢ and Z := 3N,

Then the L3-algorithm finds at least two vectors in L(M) with norm smaller than
(eM)™
dim L(m)

Proof: Set n = dim L(M). Applying Theorem 4, we know that the second-to-shortest
vector vh of an Lz-reduced base satisfies [vh| < 27 det L(M )ﬁ Thus, we have to
satisfy the condition
(eM)™

Jn
Neglecting all terms that do not depend on N, the condition simplifies to det L(M) <
(eM)™n=1)_ We set t = 7m. Then, a straightforward calculation shows that

2% det L(M)7T <

§m®(1+o(1))
det L(M) _ <(6MX)3T+223T2+3T+1> 6 )

If we plug in the bounds Y = N* and Z = 3N %, we obtain the new condition

N 1M (32437 (204 1) +4at1) (1+0(1)) < (eM)m(n—l)—(3T+2)(%m?’(l—f—o(l))).
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On the other hand, we know that eM > Notgtsvitbate Ay easy computation shows
that n = (7 + %)m2 Again neglecting all low order terms, we obtain the new condition

972 +6(a+7) —2V1 +6a(1+37) +2<0

The left-hand side minimizes for the parameter choice 7 = %(\/1 + 6a — 1). For this
setting of 7, our condition is satisfied. This concludes the proof of Lemma 60.

Combining Theorem 14 and Lemma 60, we obtain two polynomials f1(y, 2), fa(y, 2)
with the common root (yg,zp) over the integers. By Assumption 58, the resultant
resy(f1, f2) is not zero such that we can find zp = p + ¢ — 1 using standard root finding
algorithms. This gives us the factorization of N.

We briefly summarize the algorithm of the attack.

/ Algorithm Heuristic LSB-Attack \

INPUT: - (NV,e), where N = pq and d satisfies ed = 1 mod ¢(N)
— do, M with dy = d mod M and M > Ns+3VI¥6a+e where o = logy (e).

1. Fix an integer m (depending on 1) and construct the basis B(m) of the lattice
L(m).

2. Find two vectors vy, ve € L(m) with norm less than ((;.L)T) in L(M) using
1m m

the L3-algorithm.

3. Construct two bivariate polynomial fi(y, z), f2(y, z) from v1,v9 and compute

9(2) =reso(f1, f2)-

4. For every root z of g(z), test whether the solutions of the quadratic equation
22 — (20 + 1)z — N equal the factors p, q.

OUTPUT: p,q

N /

Since m is fixed, L(m) has constant dimension and the basis matrix B(m) has entries
that are bounded by a polynomial in N. This implies that the L3-algorithm runs in
polynomial time. Additionally, g(z) has constant degree and coefficients bounded by
poly(N). Thus, every step of the algorithm can be done in time polynomial in log(N).
This concludes the proof of Theorem 59. &
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6.5 Known MSBs/LSBs and Chinese Remaindering

In order to speed up the decryption/signing process, it is common practice to use the
values d,, := d mod p — 1 and d; := d mod ¢ — 1 (see the Quisquater-Couvreur method
in Section 2.1).

Fast RSA decryption/signature variants are especially interesting for time-critical
applications like smart-cards, which in turn are highly vulnerable to side-channel attacks.
Therefore, it is interesting to study how many bits of d,, (or symmetrically of d,) suffice
in order to find the factorization of N. We present two rigorous results for both cases
— LSBs and MSBs — in this section (see also Figure 6.3).

Both of our proofs use Theorem 10, which in turn is based on Coppersmith’s method
in the univariate case. We recall this theorem here.

Theorem 10 (Coppersmith: MSBs of kp) Let N = pq with p > q. Furthermore, let
k be an (unknown) integer that is not a multiple of q. Suppose we know an approzimation
D of kp with

|kp — 5| < 2Nt

Then we can find the factorization of N in time polynomial in log N.

First, we consider the case of known LSBs of d,. We show that whenever the public
exponent e is of size poly(log V), then half of the lower bits of d, are sufficient to find
the factorization of N in polynomial time.

Throughout this section, we assume wlog that p > ¢. Since p and ¢ are of the same
bit-size, we know that p < 2v/N.

Theorem 61 Let (N,e) be an RSA public key with N = pq and secret key d. Let
d, := dmod p — 1. Suppose we are given dy, M with dy := d, mod M and
M > Ni.
Then the factorization of N can be found in time e - poly(log N).
Proof: We know that

ed,—1=k(p—1)

dp—1 .
Sp < e. Let us write

for some k € Z. Since d, < p — 1, we know that £ =

d, = di M + do, where d; < %” <4 < 9Ni. We can rewrite our equation as
edg+k—1=kp—eMd.

Let E be the inverse of eM modulo N, e.g. there exists a ¢ € N such that F-eM = 14+cN
(if E does not exist, we obtain the factorization of N). Multiplying the above equation
by E yields

E(edy+k—1) = (Ek — cqdy)p — dy.
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The only unknown parameter on the left hand side of the equation is k. We make a
brute force search for k in the interval [1,e). The correct guess of k gives us a multiple of
p up to an additive error d; < 9Ni. For the correct guess of k, the value E(edy +k — 1)
is an approximation of kp, k = Fk — cqd; up to an error of at most 2N i,

Then an application of Theorem 10 yields the factorization of N. Note that ¢ divides
the term Ek — cqd; iff ¢ divides k which is easily testable (¢ cannot divide k in the case
e < q), i.e., the restrictions of Theorem 10 are satisfied.

We briefly summarize our factorization algorithm.

/ Algorithm LSB-Attack for d,, \

INPUT: — (N,e), where N = pq and d,, satisfies ed, = 1 mod p — 1
— do, M with dy = d, mod M and M > N1

1. Compute £ = (eM) 'mod N. If the computation of F fails, output
ng(eM,N) and m
2. FORk=1TOe
Run the algorithm of Theorem 10 on input E(edy + k — 1). If the algo-
rithm’s output is p,q then EXIT.

\OUTPUT: D, q /
The running time of the algorithm is e - poly(log N'), which concludes the proof.

In our second approach, we consider the case when MSBs of d,, are known.

Theorem 62 Let (N,e) be an RSA public key with secret key d and e = N for some
a € [0, %] Further, let d, := d mod p — 1. Suppose we are given d with

\d, —d| < Ni~°,
Then N can be factored in polynomial time.

Proof: We start again by looking at the equation ed, —1 = k(p —1). Since d) < p — 1,
we know that k& < N, which implies that ¢ cannot divide k. Compute p = ed — 1. Now,
P is an approximation of kp up to an additive error of at most

[kp— | = le(dy — d) + k| < N + N* < 2N,
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Thus, p is an approximation of kp with error at most 2N i, Applying the algorithm of
Theorem 10 yields the factorization of N.
Here is the algorithm of the attack.

/ Algorithm MSB-Attack for d,, \

INPUT: - (N,e), where N = pq and d,, satisfies ed, = 1 mod p — 1
— d with |d, — d| < N1 where a = logn(e).
1. Compute p = ed — 1.

2. Run the algorithm of Theorem 10 on the input p.

\OUTPUT: D, q /
The algorithm runs in time polynomial in log(/N), which concludes the proof.

6.6 Considering moduli of the form N = p"q

In this section, we consider public key cryptosystems that use moduli of the form N =
p"q. Examples for such schemes can be found in [30, 54, 67]. Here, we will mainly focus
on RSA-type schemes with the public key equation ed = 1 mod ¢(N) and on Takagi’s
scheme [67]. Notice that in Takagi’s scheme only the values d, := dmodp — 1 and
dq := dmod q — 1 are used.

In 1999, Boneh, Durfee and Howgrave-Graham showed that moduli of the form
N = p"q should be handled with care. We have already presented their result in Chap-
ter 3 (see Theorem 13), where we showed that it is a direct application of Coppersmith’s
theorem for the univariate modular case (Theorem 7). Let us here recall the result of
Boneh, Durfee and Howgrave-Graham.

Theorem 13 (BDH) Let N = p"q, where r is a known constant and p, q are of the
same bit-size. Let k be an (unknown) integer that is not a multiple of p"~'q. Suppose
we know an integer p with

|kp— | < NTFI7.

Then N can be factored in polynomial time.
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We see that moduli of the form N = p"g are much more susceptible to attacks that
leak bits of p than RSA moduli N = pq. In the following sections, our goal is to show
that moduli N = p”"q are also more susceptible to attacks that leak bits of the secret key
dor of d, = dmodp — 1.

6.6.1 Partial key exposure attacks from new attacks for small d

It was stated in the work of Takagi [67] that RSA-type schemes which use the equation
ed = 1 mod ¢(NN) seem to be less vulnerable to Wiener’s attack for small decryption
exponents d than the original RSA scheme. Namely, Takagi proved a generalized Wiener-
like bound of d < N ﬁ However, we introduce two attacks that show that there exist

much better bounds when small d’s are applied. Our first attack is an application of
Theorem 13 and yields an improved bound of

d < Ne+D2 for r > 2.

Let us compare the results for r = 2: T;akagi’s method requires that d < N § whereas
our new method works whenever d < No.

Our second method directly makes use of Coppersmith’s method in the univariate
case (i.e., Theorem 7) and leads to the bound

r—1\2 __4r

d< N(T+l) — NTT? fory > 2.

Interestingly in contrast to the previous bounds, this new bound converges to N for
growing r instead of converging to 1. It improves upon our first attack for all parameter
choices r % 3: The second attack requires that d < N7 in the case r = 3 compared
to d < N16 for the first method. Thus, our first attack is only superior to the other
methods in the case r = 2, but moduli of the form N = p?q are frequently used in
cryptography and therefore they represent one of the most interesting cases.

We want to point out that these new attacks are normally not a threat to Takagi’s
scheme because there is no need to choose a small decryption exponent d in the scheme.
Since in the decryption process only the values d, and d, are used, it would be preferable
to make these values small instead of the term d. We study partial key exposure attacks
on the value d,, in Section 6.6.2.

Interestingly, the new attacks for small decryption exponents d have two features
which the original Wiener attack (see Section 4.2) and the Boneh-Durfee attack (see
Section 7.2) do not possess:

e One cannot counteract the new attacks by choosing large public exponents e, since
the attacks are independent of the value of e. In comparison, Wiener’s attack and
the Boneh-Durfee attack assume that e < ¢(N). It is known that these attacks
cannot be applied if e > N1 respectively e > N187,
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e The new attacks immediately imply a partial key exposure attack for d with known
MSBs. Namely, it makes no difference in the attacks whether the most significant
bits of d are zero (and thus d is a small decryption exponent) or are known to
the attacker. In contrast, Wiener’s attack and the Boneh-Durfee attack for small
decryption exponents do not work when the MSBs are non-zero but known. In
addition, the new attacks also provide partial key exposure attacks for known
LSBs.

The resulting partial key exposure attacks share the same property as the under-
lying attacks for small decryption exponents d: They do not rely on the size of the
public exponent e. Note that all the partial key exposure attacks mentioned so far
were dependent on e and did not work for arbitrary e € Z;( N) (for an overview see
Figure 6.4). The new methods are the first partial key exposure attacks that work
for all public exponents e.

The difference of the new attacks versus the Wiener and Boneh-Durfee attack is that they
do not require to compute the unknown parameter k in the equation ed—1 = k¢(N) with
Coppersmith’s method. Thus, £ must not be a small parameter and hence the parameters
e and d can be increased (thereby increasing k) without affecting the usability of the
attacks.

The reason that these new attacks do not require the direct computation of k is
mainly that for moduli N = p"g¢ the size of the multiplicative group Z} is ¢(N)
p"~'(p—1)(g —1). Thus for r > 2, $(N) and N share the common divisors p and p"~
and this can be used in the attacks by constructing polynomials with small roots modulo
p (our first attack) or modulo p"~! (our second attack), respectively. But looking at the
equation ed — 1 = k¢(N) modulo p or modulo p"~!
parameter k.

—_

removes in both cases the unknown

The attack modulo p

We present an attack for small decryption exponents d and afterwards extend this ap-
proach to partial key exposure attacks. Notice that the following theorem holds for
public exponents e € Z, ged(e, $(IN)) = 1 of arbitrary size.

Theorem 63 Let N = p"q, where r > 2 is a known constant and p, q are primes
of the same bit-size. Let (e,d) € 7 x Zn be the public-key/secret-key pair satisfying
ed = 1 mod ¢(N). Suppose that

d< NGi?,

Then N can be factored in probabilistic polynomial time.

Proof: We know that ¢(N) = p"~}(p—1)(¢—1) and therefore the key pair (e, d) satisfies
the equation
ed—1=kp"*(p—1)(g—1) forsome k € N. (6.7)
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Let E be the inverse of e modulo N, i.e., EFe = 1 + ¢N for some ¢ € N. If ¥ does not
exist then ged(e, N) must be a non-trivial divisor of N.

Note that each possible divisor p®, p®q or ¢ (1 < s <) does immediately yield the
complete factorization of N: p® can be easily factored by guessing s and taking the st
root over the integers. On the other hand, p®q yields p];[q = p"~*® which reduces this case
to the previous one. Similarly, ¢ gives us p".

Thus, we can assume wlog that the inverse E of e modulo N exists. Multiplying
equation (6.7) by E leads to

d—E= (Bkp"*(p—1)(g—1) — cp" 'qd)p.

Thus, E is a multiple of p up to an additive error of d < N W In order to apply
Theorem 13, it remains to show that the term Ekp™2(p — 1)(¢ — 1) — cp" 1qd is not a
multiple of p"~1q. Since p"~'q divides the second term, this is equivalent to show that
Ek(p—1)(¢g—1) is not a multiple of pg. By assumption, we have gcd(E, N) = 1 and thus
it remains to prove that pg does not divide k(p—1)(¢—1). Assume k(p—1)(¢—1) = 'pq
for some ¢ € N. Then equation (6.7) simplifies to

ed—1=¢N.

On the other hand we know that e — 1 = ¢N. Combining both equalities we obtain
that d = EF' mod N. Since d, E < N we have d = E even over Z. But this means that F
equals the secret key which yields the factorization of N using Theorem 2.

We briefly summarize the algorithm.

/ Algorithm (Mod p)-attack for small d using a modulus N = p"q \

INPUT: (N, e), where N = p"q and ed = 1 mod ¢(N) for some d < N2,

1. Compute E = e~! mod N. If the computation of E fails, output p, q.

2. Run the algorithm of Theorem 13 on the input F. If the algorithm’s output
is p,q then EXIT.

3. Otherwise run the probabilistic algorithm of Theorem 2 on the input (N, e, E).
OUTPUT: p,q

N /

Since every step of the algorithm runs in (probabilistic) polynomial time, this concludes
the proof of the theorem.
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Theorem 63 gives us a polynomial time factoring algorithm whenever a certain
amount of the MSBs of d are zero. The following corollary shows how the proof of
Theorem 63 can be easily generalized such that the result does not only hold if the
MSBs of d are zero but instead if they are known to the attacker. This gives as a partial
key exposure attack for known MSBs with an analogous bound.

Corollary 64 (MSBs) Let N = p"q, where r > 2 is a known constant and p, q are
primes of the same bit-size. Let (e,d) € XLy be the public-key/secret-key pair satisfying
ed = 1 mod ¢(N). Suppose we are given d such that

|d—d| < N2,
Then N can be factored in probabilistic polynomial time.
Proof: The key-pair (e, d) satisfies the equality
e(d—d)+ed—1=Fkp" (p—1)(g—1) for some k € N.

Let E := e ' mod N, i.e., Ee = 1+ ¢N for some ¢ € N. If E does not exist, we obtain
the factorization of N. Multiplying the above equation by E yields

(d—d)+E(ed—1) = (Ekp" *(p—1)(q — 1) — cp" " 'q(d — d))p.

Thus, E(ed — 1) is a multiple of p up to an additive error of |d — d| < NG+? | The rest

of the proof is completely analogous to the proof of Theorem 63.
Corollary 64 implies that one has to know roughly a fraction of 1 — W of the MSBs

of d for our partial key exposure attack. We can also derive a partial key exposure attack
for known LSBs with an analogous bound.

Corollary 65 (LSBs) Let N = p"q, where r > 2 is a known constant and p, q are primes
of the same bit-size. Let (e,d) € 7 x Zn be the public-key/secret-key pair satisfying
ed = 1 mod ¢(N). Suppose we are given dy, M with d = dy mod M and

M Z Nli (r:1)2 )

Then N can be factored in probabilistic polynomial time.

Proof: Let us write d = diM + dy, were the unknown d; satisfies d; = - < % <
N +1? " 'We have the key equation

edyM +edy—1=kp"*(p—1)(g—1) for some k € N.
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Multiply the equation by E = (eM)~! mod N. We see that E(edy — 1) is a multiple of p

up to an additive error of |dy| < N +D?. The rest of the proof is analogous to the proof
of Theorem 63.

r—1

Attack modulo p

Our first attack applied Theorem 13 which in turn uses a polynomial with small roots

modulo p. In our second attack we will construct a polynomial with a small root modulo
r—1

p" " and directly apply Coppersmith’s method in the univariate case (Theorem 7). This
approach yields better results than the first one whenever r > 3.

Theorem 66 Let N = p'q, where r > 2 is a known constant and p, q are primes
of the same bit-size. Let (e,d) € Z X Zy be the public-key/secret-key pair satisfying
ed = 1 mod ¢(N). Suppose that

d< N(:H)Q_
Then N can be factored in probabilistic polynomial time.

Proof: The key pair (e, d) satisfies the equation
ed—1=kp" Yp—-1)(g—1) for some k € N.

Let E be the inverse of e modulo N, i.e., Fe =1+ ¢N for some ¢ € N. In the case that
E does not exist, ged(e, N) yields the complete factorization of N as shown in the proof
of Theorem 63. Multiplying our equation by E leads to

d—E = (Ek(p—1)(q — 1) — cdpq)p"™".
This gives us a simple univariate polynomial

fpr—1(x)=2—-F

with the root ¢ = d modulo p" 1.

That is, we have a polynomial f,--1 of degree 6 =1 with a root zop modulo p’~L In
order to apply Theorem 7, we have to find a lower bound for p"~! in terms of N.

Since p and g are of the same bit-size, we know that p > %q. Hence p' 1 =& > N

pqg = 2p*

This gives us

r—1

P> lN T > lN:H
2 2

Thus, we can choose § = % — logl ~ and apply Theorem 7 with the parameter choice

G, 6 and ¢y = 2. We can find all roots zy that are in absolute value smaller than

2 — 2(r—1
oNE _ onF Rt

r—1 1 -1

ety >N T my = NGRP
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Hence, we obtain the value g = d. Applying the algorithm of Theorem 2 gives us the
factorization of N in probabilistic polynomial time.

Remark 67 Another (deterministic) polynomial time method to find the factorization
of N could be the computation of gcd(ed — 1, N). Since ed — 1 = kp"™~*(p — 1)(¢ — 1),
the computation yields a non-trivial divisor of N iff pq does not divide k(p — 1)(q — 1),
which is unlikely to happen. As shown in the proof of Theorem 63, a non-trivial divisor
of N reveals the complete factorization of the modulus. So in practice, one might try

this alternative gcd-method first and if it fails, one applies the probabilistic algorithm of
Theorem 2.

Let us summarize our new factorization algorithm.

/ Algorithm (Mod p")-attack for small d using a modulus N = p"q \

o102
INPUT: (N, e), where N = p"q and ed = 1 mod ¢(N) for some d < NGR)

1. Compute F = e~! mod N. If E does not exist, compute ged(e, N) and output
p,q.

2. Apply the algorithm of Theorem 7 on input N, f,r-1 =z —F, f = :jr—} — loglN
and cy = 2. This gives us the value d.

3. If the computation ged(ed — 1, N) yields the factorization, EXIT.

4. Apply the algorithm of Theorem 2 on input (N, e, d).

OUTPUT: p.q

N /

Every step of the algorithm can be computed in polynomial time, which concludes the
proof of Theorem 66.

Similar to the first attack (the (Mod p)-attack) for small decryption exponent d, we can
also easily derive partial key exposure attacks for the new attack of Theorem 66. The
proof of Theorem 66 shows that in order to find the factorization of N, it suffices to find
r—1)\2
a linear, univariate polynomial f,--1(x) = 2 4 ¢ with a root zo < NGF)" modulo pr L
We will show that this requirement is easily satisfied for the following partial key
. . r—1 2 1— 4r
exposure attacks. Instead of using small decryption exponents d < N (F71) = N +D)%
the attacker has to know a fraction of roughly (Ti—rl)g of the bits of NV in order to succeed.
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Corollary 68 (MSB) Let N = p"q, where r > 2 is a known constant and p, q are primes
of the same bit-size. Let ~(e,al) € 7Z x Zn be the public-key/secret-key pair satisfying
ed =1 mod ¢(N). Given d with
~ r—1 2
ld—d| < N(=1)
Then N can be factored in probabilistic polynomial time.

Proof: We know that B B
e(d—d)+ed—1=0mod ¢(N),

and ¢(N) is a multiple of p"~'. Multiply the equation by E = e~! mod N, which gives
us the desired linear polynomial

Jpr—1(z) =2+ E(ed —1)

r—1

_ 2
with the small root |xg| = |d — d| < NG modulo p"~!. The rest of the proof is
analogous to the proof of Theorem 66.

In a similar fashion, we derive a partial key exposure attack for known LSBs.

Corollary 69 (MSB) Let N = p"q, where r > 2 is a known constant and p, q are primes
of the same bit-size. Let (e,d) € 7 x Zn be the public-key/secret-key pair satisfying
ed = 1mod ¢(N). Given dy, M with d = dy mod M and

4r
M > N@+1?,
Then N can be factored in probabilistic polynomial time.

Proof: Let us write d = diM + dy. Then the unknown parameter satisfies d; < % <
r—1\2
NG5, For the key-pair (e, d) we have

e(diM +dp) —1 =0 mod ¢(N),

where ¢(N) is a multiple of p"~!. Multiplying this equation by £ = (eM)~! mod N
gives us the desired linear polynomial

Jpr—1(x) = 2+ E(edy — 1)

with the small root d; modulo p"~!. The rest of the proof is analogous to the proof of
Theorem 66.
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6.6.2 Attacks for small d modulo p — 1

The attacks that we consider in this section for moduli N = p"g can be considered
as a generalization of the attacks that were presented in Section 6.5. Instead of using
Theorem 10, we apply the generalized method of Theorem 13 for moduli N = p"¢q in our
approach.

We derive simple partial key exposure attacks for small public exponents e in both
cases: known MSBs and known LSBs. The new attacks are a threat to schemes that
use CRT-decoding (for instance Takagi’s scheme) in combination with small public ex-
ponents.

Let us state our LSB-attack.

Theorem 70 Let N = p"q, where r > 1 is a known constant and p,q are primes of the
same bit-size. Let e be the public key and let d, satisfy ed, =1 mod p — 1. Suppose we
are given do, M with dy := d, mod M and

M > N2,
Then N can be factored in time e - poly(log(N)).
Proof: Let us consider the equation
ed,—1=Fk(p—1) forsome k € Z.

Since d,, < (p —1), we obtain the inequality k < e. Let us write d, = diM + dy. We can

bound the unknown d; by d; < % < N +12 | Our equation above can be rewritten as
ediM +edy+ k—1=kp.

Compute the inverse E of eM modulo N, i.e., EeM = 1+ ¢N for some ¢ € N. If
does not exist, we obtain from ged(eM, N) the complete factorization of N as shown in
Theorem 63. Multiplying our equation with E leaves us with

dy + E(edy + k — 1) = (Ek — cp”tqdy)p.

Thus, F(edy+ k— 1) is a multiple of p up to some additive error dy < NW. Since the
parameter k is unknown, we have to do a brute force search for & in the interval [1,e).

In order to apply Theorem 13, it remains to show that the term (Ek — cp™lqdy) is
not a multiple of p"1¢. This is equivalent to the condition that p" !¢ does not divide
Ek, but we know that ged(E, N) = 1. Thus, we obtain the condition that p"~'q does
not divide k. But p" !¢ cannot divide k in the case e < p" ¢ and otherwise we can
easily check the condition by computing ged(k, N) for every possible k. The algorithm
of Theorem 13 yields the factorization of N for the correct guess of k.

We briefly summarize our factorization algorithm.
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/ Algorithm LSB-Attack for d, and moduli N = p"q \

INPUT: - (N,e), where N = p"q and d,, satisfies ed, = 1 mod p — 1
1
— do, M with dy := d, mod M and M > 2N (r+1)2

1. Compute E = (eM)~! mod N. If the computation of F fails, find the factors
p,q of N using ged(eM, N).
2. FORk=1TOe

a) If ged(k, N) > 1 find the factors p, q.

b) Run the algorithm of Theorem 13 on input E(edy + k — 1). If the algo-
rithm’s output is p, ¢ then EXIT.

\OUTPUT: D, q /
The running time of the algorithm is e - poly(log N'), which concludes the proof.

Note that our method from Theorem 70 is polynomial time for public exponents of
1

the size poly(log(N)) and requires only a W—fraction of the bits (in terms of the size of
N). The following theorem gives us a similar result for partial key exposure attacks with
known MSBs, but in contrast the method is polynomial time for all public exponents
e< N W ;

Let e = N*. We show that an approximation of d,, up to N +07 " guffices to find
the factorization of N. Note that d), is of size roughly N Wll Hence in the case a« =0, a

fraction of —— — —"— = —L_ of the bits is enough.

r+1 (r+1)2 (r+1)2

Theorem 71 Let N = p"q, where v > 1 is a known constant and p,q are primes of

the same bit-size. Let e = N%, «a € [0, ﬁ] be the public key and let d, satisfy

ed, = 1 mod p — 1. Suppose we are given d with

|d, —d| < Nor2°,
Then N can be factored in polynomial time.
Proof: We know that

ed, —1=k(p—1) forsomek eN,
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with k < e. The term ed is an approximation of kp up to an additive error of

kp—ed| = le(dy—d) +k —1] < |e(d, — )| + [k — 1]

< NO@+D2 4 N* <2N +D2,

Thus, one of the terms ed + N T2 satisfies the bound of ?heorem 13. Note that the
algorithm of Theorem 13 can be applied since k < e < N (+D? and thus k cannot be a
multiple of p"~lq = Q(N%Jrl)

Let us briefly summarize the factorization algorithm.

/ MSB-Attack for d, and moduli N = p"q \

INPUT: - (N,e), where N = p"q and d,, satisfies ed, = 1 mod p — 1
— d with |d, — d| < N2 ~%, where o = log y(e).
1. Compute p = ed.

2. Run the algorithm of Theorem 13 on the input p+ N +1* . If the algorithm’s
output is p, ¢ then EXIT.

3. Otherwise run the algorithm of Theorem 13 on the input p — N +1?,

QUTPUT: D, q j
The algorithm runs in time polynomial in log(/N), which concludes the proof.
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7 Improved Lattice Bases

“We [he and Halmos] share a philosophy about linear algebra;
we think basis-free, we write basis-free, but when the chips are
down we close the office door and compute with matrices like
fury.”

Irving Kaplansky

7.1 Introduction

In the previous chapters, we showed several applications of Coppersmith’s method for
finding small roots of modular polynomial equations, thereby introducing new RSA
vulnerabilities. The methodology that we used by applying Coppersmith’s method in
the multivariate case had (almost) always the same form:

1. Construct a polynomial f in the variables xi,...x; which has a “small” root
(29,...,29) modulo some number p.

2. Fix an integer m and construct a set {gi,...,gn} of polynomials depending on
f such that each g; has the small root (z9,... ,xg) modulo p™. Furthermore, we
choose the polynomials in such a way that the ordering g1, ..., g, implies that each
polynomial g; has the same monomials as the polynomials gq,...,g;—1 except for
one additional monomial. This implies that the coefficient vectors of g1,..., 9,

form a lower triangular matrix.

3. Prove that using the L3-algorithm, we can find at least k vectors with norm smaller
than f/—”% in the lattice L that is spanned by the coefficient vectors gi,...,gn.
Heuristically, the root (9. .. ,xg) can then be found by resultant computations
using the k shortest vectors of the L3-reduced lattice basis.

One should notice that there is a non-necessary restriction in Step 2 of the approach
above: There is no need to require that the coefficient vectors of gi,...,g, form a
triangular lattice basis. In fact, we always used this restriction in the previous chapters
in order to keep the determinant computations of L simple. From the determinant in
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Introduction: Improved Lattice Bases

turn, we could derive upper bounds for the k shortest vectors in the L3-reduced basis of
Step 3.

If we skip the restriction that each g; introduces exactly one additional monomial
then we obtain a much larger variety in choosing the polynomials, which in turn should
help to improve the bound for the size of the small root (9,... ,xg). One can also
view this in the following way: First, we choose the polynomials as before and then we
eliminate some polynomials g;, i.e., we choose only a certain subset of all polynomials in
our new approach.

This leads immediately to our main goal of this chapter:
Goal: Identify a subset of vectors that optimizes Coppersmith’s method.

Unfortunately, we are not able to give general conditions for optimal subsets of vectors in
Coppersmith’s method. Theoretically, this seems to be a very difficult problem. However
in practice it might not be a problem at all to find good subsets of vectors. The reason
for that is that the L3-algorithm often finds much better approximations of shortest
vectors than theoretically predicted. Therefore, we can simply apply the L3-algorithm
and look which subsets of vectors it uses in order to find short vectors. If the triangular
lattice basis is not optimal then it is likely that the L3-algorithm does not use all vectors
in order to approximate the shortest lattice vectors. Thus, the problem of finding an
optimal lattice basis is the problem of finding the theoretically best bounds when using
Coppersmith’s method.

In this chapter, we give a case study for finding an optimal lattice basis for the
polynomial f(z,y) = x(N+1+y)—1 with a small root (z¢, y9) modulo e. This polynomial
is important since it is used in Boneh-Durfee’s approach [12] that improves Wiener’s
attack (see Section 4.2) on low secret exponent RSA. Boneh and Durfee presented two
different approaches: The first one finds the factorization of N provided that d < N0-284
using a triangular lattice basis Bgp. The second one makes use of a suitable subset of
vectors from Bpgp, thereby improving the bound to N%2%2. They introduce the notion
of so-called geometrically progressive matrices in order to analyze the non-triangular
lattice basis.

Since the publication of Boneh-Durfee’s result, many researchers have tried to im-
prove the bound of N%292_ Our results of this chapter strongly indicate that in poly-
nomial time one cannot get beyond this bound using only the polynomial f(z,y) =
(N + 1+ y) — 1. This does not imply that there is no polynomial time attack on RSA
for larger values on d (see for instance Chapter 4) but for the polynomial f(x,y) the
bound seems to be sharp.

We introduce a new method to analyze a large class of subsets of the vectors of the
original Boneh-Durfee basis Bgp. In fact, the choice of these subsets was motivated by
various experiments using the Boneh-Durfee approach. The basis Bgp can be naturally
divided into blocks. We found that the L3-algorithm always used a linear combination
of the last vectors of these blocks for the shortest vectors in the basis. Moreover, the
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number of vectors that were used by L? in each block always formed a strictly decreas-
ing sequence. This special pattern of vectors — which we call from now on a strictly
decreasing sequence/pattern — lead us to the conjecture that these subsets are optimal.
We analyze strictly decreasing sequences in this chapter.

Unfortunately, it can be shown that among all strictly decreasing sequences of vectors
the optimal bound that can be achieved is d < N%?92, Thus, we cannot improve upon the
bound of Boneh-Durfee, which was originally analyzed using the notion of geometrically
progressive matrices [12]. However, our approach has some advantages when compared
to the geometrically progressive bases:

e The property of strictly decreasing sequences of vectors can be formulated in a
very simple fashion. It also offers a large variety of different, easily constructible
lattice bases that can be used.

e We show that after choosing a certain subset of vectors from the original lattice
basis Bpp, one can again transform the resulting lattice basis into a triangular
form. Therefore, the main advantage of our former approach still holds: Determi-
nant computations in the lattice are easy and we can simply derive upper bounds
for the shortest vectors in an L3-reduced basis.

e We made various experiments with the L3-algorithm on input Bgp. In every exper-
iment the shortest vectors of the reduced lattice bases formed a strictly decreasing
sequence of vectors in the blocks. Since one can show that the optimal bound for
all strictly decreasing sequences of vectors is N9292, this strongly indicates that
one cannot improve upon this bound using the polynomial f(x,y).

e Since the notion of strictly decreasing sequences offers a large variety of choosing
suitable subsets of Bgp, in practice one should choose a subset with small lattice
dimension and reasonable bound for d. We introduce such a pattern and show in
experiments that one can get attacks for d’s that are close to the theoretical bound
using lattice dimensions of at most 72.

e The simple but general formulation of our approach allows us to generalize the
method easily to similar polynomials. For instance, one could adopt our approach
to the trivariate polynomial f(x,y,z) = (N + 1+ y + z) — 1 which was used by
Durfee and Nguyen [28] in order to break an unbalanced RSA-scheme with small
secret exponent presented at Asiacrypt 1999 [66].

The chapter is organized as follows: First, we introduce the Boneh-Durfee approach
and describe the lattice basis Bgp, which leads to the bound N84, Afterwards, we
describe our algorithm that chooses strictly decreasing sequences of vectors from Bpp.
Moreover, we suggest to modify the resulting lattice basis in such a way that it becomes
again triangular by eliminating columns in the basis. We prove that this modification
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is correct: Whenever we have a short vector in the new triangular lattice, then the
corresponding short vector in the non-triangular lattice basis — that is constructed
using the same coefficients in the linear combination of basis vectors — is also a short
vector. In other words: Eliminating some coordinates in the lattice spanned by the
non-triangular basis does not change the norm of the lattice vectors significantly.

Furthermore, we analyze the subset of vectors that was chosen by Boneh-Durfee in
order to prove the bound N°?92 with our new method. It turns out that this subset
can easily by analyzed. We also propose another strictly decreasing sequence of vectors
that yields lattice bases of small dimension. We demonstrate the usefulness of this new
sequence by providing some experimental results.

We conclude the chapter by studying a special subset of Bpp, where only z-shifted
polynomials of the form z?e™~* f¥(z,y) are used. Boneh and Durfee noticed that this
special subset reproduces the Wiener bound of d < N i, However, we found out exper-
imentally that Coppersmith’s resultant heuristic for finding the root (zg,yo) does not
work in this case, since the resultants were always zero in our experiments. We are able
to almost completely analyze this behavior. Moreover, we give an alternative provable
method how to recover (zg, o) and the factorization of N in this case. This can be un-
derstood as a warning that the resultant heuristic may fail sometimes, but at the same
time it is a motivation to search for provable methods. In our case the resultant heuristic
fails because the polynomials corresponding to shortest vectors have a special structure:
They are all divisible by a polynomial whose coefficients yield the factorization of IV,
which is similar to the case of the bivariate, rigorous methods presented in Sections 5.2
and 5.3. Hence, a failure of the resultant heuristic must not automatically imply a failure
of a Coppersmith-like attack.

7.2 The Boneh-Durfee lattice

In this section we review the lattice attack by Boneh and Durfee [12] on low exponent
RSA. Let d < N%. We assume that the size of e € Z?;(N) is in the order of the size of
N. If e is smaller, the attack of Boneh and Durfee becomes even more effective (see [12],
Section 5).

Boneh and Durfee start with the RSA key equation

ed+k(N+1—-(p+q)=1 (7.1)

ed—1
(N)

where |k| = < d. Let A= N + 1. Looking at equation (7.1) modulo e gives us the

polynomial
fla,y) =2(A+y) -1,

with the root (zg,y0) = (k, —(p 4 ¢)) modulo e. We define the upper bounds X := N
and Y := 3N satisfying |zo| < X and |yo| < Y.
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Next, we fix some integer m and define the polynomials

gin(z,y) =" fFz,y)e™* and k() =y P, y)e™ R

In the sequel, the polynomials g;; are referred to as x-shifts and analogously the
polynomials h;j are referred to as y-shifts. By construction, the point (zg,y0) is a
root of all these polynomials modulo ™. Thus, we can apply Howgrave’s theorem
and search for a small norm integer linear combination of polynomials g; (xX,yY") and
hjk(xX,yY). This is done by using the L3-lattice reduction algorithm. The goal is to
construct a lattice L that is guaranteed to contain a vector shorter than e /y/dim(L).

The Boneh-Durfee lattice is spanned by the coefficient vectors of the polynomials
Gi ks hj i for certain parameters 7, j and k. For each k = 0,...,m, Boneh and Durfee use
the a-shifts g; (X, yY’) for i = 0,...,m — k. Additionally, they use the y-shifts h;; for
7 =0,...,t for some parameter t.

We call the lattice constructed by Boneh and Durfee the lattice Lgp. The basis
for Lpp is denoted by Bpp. The lattice Lgp is spanned by the row vectors of Bpp.
Since the lattice depends on the parameters m and ¢, we sometimes refer to the basis
by Bpp(m,t) to clarify notation. It is easy to see that the basis vectors of the lattice
Lpp form a triangular matrix. We give an example of the lattice basis for the parameter
choice m =2 and t = 1, e.g. Bpp(2,1) is the matrix:

i 1 T zy | 2? %y 2y |y x> z2y3
e? | e?
ze? e’ X
fe | —e| eAX eXY
x2e? e? X?
xfe —eX eAX? eX?Y
2|1 | —24X —2XY | A’2X? 24AX?%Y X?Y?
ye? e’y
yfe eAXY —eY  eXY?
| yf? —2AXY A2X?Y 2AX?%Y? | Y —2XY? X?Y3 |

Boneh and Durfee showed that for 6§ < 0.284, one can find m,t¢ such that an L3-
reduced basis of Lpp contains vectors short enough to apply Howgrave’s theorem and
factor the modulus N. This was improved in the same work to § < 0.292 by using
non-triangular lattice bases. This is up to now the best bound for the cryptanalysis of
low secret exponent RSA. The attack works under the Coppersmith’s resultant heuristic:
Two polynomials obtained from two different sufficiently short vectors in the reduced
basis have a non-vanishing resultant. Although heuristic, no failure of the method for
sufficiently large ¢ is known.

Boneh and Durfee also argue that using t = 0, i.e., only x-shifts are used to construct
the lattice basis, one obtains already an attack working for § < 0.25. This reproduces
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Wiener’s result. However, experiments show that the method of Boneh and Durfee never
works when using only z-shifts. In Section 7.5, we will explain why this is the case. Of
course, this failure of the Boneh-Durfee method in the special case where only z-shifts are
used does not affect the method in general. It only points out that one has to be careful
when using Coppersmith’s resultant heuristic in the multivariate case. On the other
hand, we present another provable method in Section 7.5 that finds the factorization
of N in the special case where only z-shifts are used, thereby avoiding the resultant
heuristic.

Notations for the lattice basis Bgp
Since the lattice Lgp is the starting point of our further constructions, we introduce
some notations on the rows and columns of the lattice basis Bgp.

We refer to the coefficient vectors of the polynomials g; (2 X,yY’) as the X-block.
The X-block is further divided into X;,l = 0,...,m, blocks, where the block X; consists
of the [ + 1 coefficient vectors of g; , with i + k& = [. These [ + 1 vectors are called Xy,
that is the k*" vectors in the X block is the coefficient vector of Jl—k k-

The coefficient vectors of the polynomials h; form the Y-block. We define the Y;
block as the block of all m + 1 coefficient vectors of polynomials that are shifted by 7.
The k" vector in the block Y; is called Y, it is identical to the coefficient vector of
g

Every column in the basis Bgp is labelled by a monomial z%y’. All column vectors
with label zly?, I > j, form the X® column block. Analogously, we define the Y ¥
column block to consist of all column vectors labelled with aiy*t.

In the example in Section 7.2, the horizontal lines divide the basis Bpp(2,1) into
the blocks X1, Xo, X3 and Y7. Analogously, the vertical lines divide Bgp(2,1) into the
column blocks X, X® X®) and Y. In this example, the basis entry in row Yj o
and column z2y is A2X?Y.

7.3 A new method for selecting basis vectors

We introduce an alternative method for modifying the lattice bases Bgp. This new
method yields the same bound 6 < 0.292 as the Boneh-Durfee approach using geo-
metrically progressive matrices. However, it has several advantages compared to their
method.

1. Our method is more flexible than the Boneh-Durfee approach. It can be used to
analyze the Boneh-Durfee lattice bases as well as other bases. For instance for
suitable parameter choices, our method can be used to analyze lattice bases with
significantly reduced lattice dimension as a function of m and ¢t. The practical
implication is that we are able to get closer to the theoretical bound. We give
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experimental results for § > 0.265, which was the largest bound given in the
experiments of Boneh-Durfee.

2. Our proofs are elementary. Furthermore, as opposed to the Boneh-Durfee lattice
for § < 0.292, the lattice bases we use in the attacks remain triangular. Hence, our
determinant computations are simple.

3. Third, our construction makes use of structural properties of the underlying poly-
nomials. Thus, it should also apply to other lattice constructions that use similar
polynomials.

Our method transforms the Boneh-Durfee lattice basis Bpp(m,t) into a new basis
B(m,t) for a lattice L of smaller dimension.

/ Algorithm Lattice Basis Construction (LBC) \

INPUT: Lattice basis Bgp(m,t)

1. Fix a strictly decreasing pattern (pg, p1,...,pt), Do > p1 > -+ > Py

2. In the Y; block of the basis Bgp remove every vector except for the last py
vectors Y y—p,41,---,Ys,m-. In the Y;_1 block remove every vector except for
the last p;_1 vectors Y; ;—p,_,+41,...,Y:m, and so on. Finally, in the Y7 block
remove every vector except for the last p; vectors Y, +1,..., Y.

3. Remove every vector in the X-block except for the vectors in the pg blocks
mep0+1> mep0+2a e aXm'

4. Delete columns in such a way that the resulting basis is again triangular. That
means: Remove all column blocks X© XM . X(m=ro)  Furthermore, in
the column block Y, [ = 1,... ¢, remove the columns labelled with 2y
for 0 <i<m — p;.

OUTPUT: Lattice basis B(m,t)

\ /

This construction leads to a triangular basis B(m,t) of a new lattice L, which will be
used in our approach. As a short-hand notation for B(m,t) we usually write B.

As opposed to Boneh and Durfee, we do not integrate more y-shifts to improve the
bound § < 0.284, instead we remove some z-shifts.

Notice that by choosing the strictly decreasing pattern (pg, p1,...,pt) = (t+1,¢,...,1),
we get a bases B(m,t) with minimal dimension. Applying the construction with this
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special pattern to the example given in Section 7.2, we obtain the following lattice basis
of L with parameters m = 2 and ¢t = 1.

T Ty x x7y x7y x7y
xe? e2X
fe | eAX eXY

B(2,1) = | a%¢ e’ X?
rfe | —eX eAX? eX?%Y
f2 | —2AX —2XY | A’2X? 24X?%Y X?Y?
L yf? | —2AXY | AZX?Y 2AX°Y?| XPYP

Let B be the non-triangular basis we obtain after Step 3 of the construction in
Algorithm LBC. That is, B consists of the remaining basis vectors of Bgp after removing
row vectors but without removing columns. The lattice spanned by the row vectors of
B is called L. We adopt the notations of Section 7.2 for the rows and columns of B
and B. For example, the row vector X of B is the coefficient vector of g, 1, where
we removed all the entries specified in Step 4 of the construction. In the basis B(2,1)
above, the row vector Xa is the vector (0,0,e2X?,0,0,0).

We call a column vector x'y/ that appears in the basis B but not in the basis B a
removed column of B. The bases B and B are constructed using the same coefficient
vectors, where in B certain columns are removed. Having a vector u = ), pcpb in
the span of B, one can compute the corresponding linear combination @ = ;5 cyb of
vectors in B with the same coefficients ¢,. Hence, the vector dimension of @ is larger
than the vector dimension of u. One can regard the additional vector entries in u as a
reconstruction of the vector entries of uw in the removed columns. Therefore, we call @
the reconstruction vector of wu.

The row vectors X;, (I = m —po+1,...,m;k <) and Y, (j = 1,...,t;k =
m—p;+1,...,m) form the basis B. These vectors are no longer the coefficient vectors of
the polynomials g, 1 (X, yY) and h; (X, yY"), respectively, since we remove columns
in Step 4 of the construction. However, in order to apply Howgrave’s theorem we must
ensure that we construct a linear combination of bivariate polynomials that evaluates
to zero modulo €™ at the point (zg,y0) = (k,s). Hence, we still have to associate
the rows X;j and Y}, with the polynomials g, and hj;. The basis vectors of B
represent the coefficient vectors of these polynomials. Therefore, after finding a small
vector u = Y ;- pcpb in L, we compute the reconstruction vector @ = ), 5 b in L.
That is, we reconstruct the entries in the removed columns. Once the reconstruction
vectors of two sufficiently short vectors in L are computed, the rest of our method equals
the Boneh-Durfee method.

In the remainder of this section we show that short vectors u in L lead to short
reconstruction vectors u in Lg.
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A new method for selecting basis vectors

Theorem 72 Let u:= ), pcpb with ||ul| < €™ be a vector in L. Then the reconstruc-
tion vector =Y, 5 b satisfies ||u| < e™ + O(L5).

Proof.  In order to prove Theorem 72, we first show that removed columns of B are
small linear combinations of column vectors in B. We give an example for the removed
column 2% in B(2,1). Applying the construction in the following proof, we see that
this column is a linear combination of the columns z'y!' and x2?3? in B.

0 0 0
—e eXY 0
o | 1 0 1 0
0 XY 0 S X2y2 0
1 —2XY X?y?
0 —2AXY 2AX2Y?

Roadmap of the proof of Theorem 72

e We prove that all removed columns in the X blocks are linear combinations of
columns in B with small coefficients (Lemma 73).

e We show that also all removed columns in the Y7 blocks are linear combinations
of columns in B with small coefficients (Lemma 75).

e We express removed columns as linear combinations of columns in B with small
coefficients. This implies the following: Whenever a linear combination of rows
of B makes every vector entry small (i.e., every integer linear combination of the
column vectors is small), then the corresponding linear combination of the removed
column must be small as well (Lemma 76 and Lemma 77).

Lemma 73 All removed columns in the column blocks X', i < m — pgy are linear com-
binations of columns in B. Moreover, in these linear combinations, the coefficient for a
column vector in XW 1 > m — pg, can be bounded by W - ¢, where ¢ depends only

on m and t.

Proof: If 2’47 is a removed column of B, we show that z'y/ is a linear combination

of columns z!Ttyd*tt . gmymHI | If 2yt s a removed column, we can repeat
the argument to show that z'*1y**! is a linear combination of the remaining columns
i t2yi T2 g™y™m~ | Continuing in this way until all removed columns have been

represented as linear combinations of columns in B, proves the lemma. Hence, it suffices
to prove the following claim.
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Claim 1 If 2%y’ is a removed column of B, then x'y’ is a linear combination of the
columns ' 1yd Tl i +2yd 42 amym=iti where the coefficient of column x*Tlyi Tl b =

1,...,m —1, is given by
1 j+0b
(XY)P\ j /)

Note, that the coefficient ¢, = (j ;.rb) depends only on m and ¢, since j depends on m and
t.

We will prove Claim 1 by showing that for each row in B(m,t) the entry of the
column z%y/ in this row is a linear combination of the entries of the columns z+by7+? in
this row, with the coefficients as in the claim. We prove this for the rows in the X-block
and Y-block separately.

Let X;; be a row in block X;, where [ > m — pg. The coefficients in this row
are the coefficients of the polynomial e™*(xX)!"=*f*(2X,yY). By definition of f this
polynomial is

k p
em— (.%'X)l kfk(m'X yY — M ZZ k+p< ><p>quXp+lkyqxp+lkyq.
q
=0 ¢q=0

(7.2)
To obtain the coefficient of 27 H0yi+t in e™~*(xX)!=F f¥ (2 X, yY), we set p:=i—1+k+b
and ¢ := j + b. Hence, this coefficient is given by

emk(_l)iler( k > (Z —l+k+ b) Ni—l+h—j xitby it

i—l+k+b j+b
. S . k 1—l+k+0
m—k pi—l+k— ) i—l b b
= A IX'YI (-1 -1 XY).
¢ (=D )<z‘—l+k+b)< j+b >( )

We can ignore the factor e™ %A= HF=i X1yJ(—1)i~! common to all entries in row X
in the columns zt?y7+?. Then Claim 1 restricted to row X x reads as

(z' —f+ k) (Z _i'+ k) - mzi(_l)bﬂ (Xif)b (j;b> (l —lsz+b> (Z _;TZH) (XY)"

b=1

Since the binomial coefficient (i—l—fk +b) is non-zero only for k > ¢ — [+ k + b, we only
have to sum up to b <[ — 4. Substituting i — [ + k by 4’ yields

K\ (i (b [ k O\ [ +D
— E _1)btt ) 7.3
(z) (y) 2.1 ( j )(z"+b) <j+b> 3)
Subtracting the left-hand side, Claim 1 restricted to row X;j reduces to
k—i’ ) .
+b k i+0b
_ -1 b1 (J . 4
0=> (-1) ( AN AREN) (74)

b=0
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One checks that

j+0b k i +b\ k! k—i
j i"+b)\j+b) (k=) -\ b )
This shows

S () ()0 = ()

b=0

Since Z(—l)b(k;i/) = (1+(=1))*" = 0 we get equation (7.4). This proves Claim 1 for
the X-block.

In the same manner, Claim 1 is proved for the Y-block. Let Y;; be a row in block
Y;. Analogously to equation (7.2), we get

k- »p
k
Ry R X, yY) = em 7k Z Z(—l)k‘”’ (p) <p> APTIXPY T gpyatl

p=0 ¢=0 q

We obtain the coefficients of *ty7*0 in em~Fy! f¥(x X, yY) by setting p := i + b and
q =7 — 1+ b. Again, we ignore the common factors in e, A, X and Y. Now, Claim 1
for Y} ;. reduces to

<I;> <J’ Z— l> - ZLZ:(_DW <j j b) (z J]i b> <J- Z_Jlri b) (7.5)

Notice that both sides of the equation are zero if k < i. However, there is a problem
for the case k = i because the left-hand side is (jil) and the right-hand side is zero due

to the term (Z fb). Hence, the equality only holds for j < [. But further notice that the
case k = i cannot occur for the basis B: In our lattice basis construction algorithm we
use a strictly decreasing pattern pg > p; > -+ > p;. But pg > p;, i > 0 means that if
we remove m — po + 1 column blocks X*, then we remove in each Y; block, 1 < < t, at
least the first m — pg + 2 rows Y7 ;, which implies that k£ > 1.

We show in the following that equation (7.5) holds for the parameter settings of our
lattice basis B. We only have to sum up to b < k — i, because the factor (ifb) is zero
for k < i+ b. Substituting j — [ by j and subtracting the left-hand side yields

o= e (N ()0

b=0
k! o GAL+D (k—i
- <k—z'>!<j+z>!<z'—j>!;;;(‘”b“( SO

In order to show that the right-hand side is zero, we prove the following more general
lemma.
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Lemma 74 For all [,m,n € N, we have

L)) ()

Proof: We prove the lemma by induction over n. For n = 0 the statement is correct.
Now let us assume that the statement is correct for n — 1. We conclude in the
inductive step that it also holds for n. Let us write

bzn%(_l)b@)(mf b) bf%(—l)b((”gl) <Z:D>(m+b)
- S ()L

. 1 1 .. . .
Since ("n ) = ("_1) = 0, we eliminate one term in each summation. Thus, we can

rewrite our summations as

Sor () B ()

b=0 b=0

Using the induction assumption for n — 1, we obtain

(1 <<Z—7:+ 1) - <z Tn++11)> B (_m(l iln>'

This concludes the proof of Lemma 74.

Now let us apply Lemma 74 to the sum

g(_l)b—l—l <k ; z) (j +§ +b> _ (_1)k—i—1<l i Ziz>

b=0

We observe that this term is zero whenever k& > [ +i. As we argued before (see the
paragraph following equation (7.5)) the strictly increasing pattern py > py of our lattice
basis construction algorithm implies that k£ > i. Now, p1 > pa > .-+ > p; implies that
by going from the Y; to the ¥;,; block we remove at least one more vector, i.e., if Y7, is
the vector in Y; with minimal k& then Yj;; cannot be a vector in B. In other words if
increases by one then k increases by at least one which implies the necessary condition
E>1+1.

This concludes the proof of Lemma 73.
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Lemma 75 Every removed column vector x'y'ti i < m — pj, is a linear combination
of the columns in the column block Y9 of B. In this linear combination, the coefficient
for a column vector x*y*+7 k> m — pj. can be bounded by W - ¢, where ¢ depends
only on m.

Proof: The proof is analogous to the proof of Lemma 73. With the same reasoning as
in Lemma 73, it suffices to prove the following claim.

Claim 2 If z'y'*7 is a removed column of B, then x'y'*7 is a linear combination
of the columns x'Tlyttitl  git2yiti+t2 xmym+3, where the coefficient of column

Oyt b =1, m —1i, is given by

(5

Note, that the coefficient —(ing) depends only on m since i < m.

We will prove Claim 2 by showing that for each row in B(m, t) the entry of the column
z'y*J in this row is a linear combination of the entries of the columns z*t2y**tJ*? in this
row, with the coefficients as in the claim.

Let Y ; be a row in block Y}, where j <[ < ¢ and £ > m — p;. The coefficients in
this row are the coefficients of the polynomial e™*(yY)! f¥(x X, yY). By definition of f
this polynomial is

k p

k) fReX, yY) = emF Z Z k‘ﬂ’( > (Z) AP x Py atlgpyatl, (7.6)

p=0 g=

In order to obtain the coefficient of z*+ty" i+t we set p :=i+band g :=i+b+j—1. As
in the proof of Lemma 73, we ignore the common factors in e, A, X and Y to simplify
our equation. Then Claim 2 restricted to row Y}, ;, reads as

()50 = B (T (o

Since (Z +b) = 0 for k < i+0b, we only have to sum up the terms with b < k—i. Subtracting
the left-hand side of the equation leaves us with

. ’“ pper (1HBY [ i+b
N - i i+b)\i+b+j—1
- (k)'” () 6)

b=0 I=j
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Applying Lemma 74 to the sum in the equation above yields

k—i . . .
Z(_l)b-l-l <k - Z> <Z + b> _ (_1)k—i+1 < . ? > )
prd b h—1 l—j—k+1

It holds that (lijj & H) =0 for k > [ +i—j. In the proof of Lemma 73, we have already
seen that every strictly decreasing pattern pg > p; > --- > p; implies that & > [ + 4.

Therefore k > [ 4+ i — 7 which concludes the proof of Lemma 75.
Lemma 76 Let u := ) ,.pcpb be a linear combination of vectors in B with |lul| <

e™. For fized m and t and for every removed column x'y? in the X® block (0<i<
m — po), the entry x'y’ in the reconstruction vector 4 = ), g cpb can be bounded by

Proof: Consider a removed column zly/. Let v := (v1,v2,... ,vn)T be the column
vector z'y/ in B, where the entries are multiplied by the coefficients ¢;,. We want to
show that | Y p_, vg| = O(M%) This would prove the lemma.

Apply Lemma 73 and write v as a linear combination of the py columns

m, m—i+j

m—po+1
b coxMy

T ym—po—l—l—z-i-j’ )

in B, where again the entries in each of the py vectors are multiplied by the coefficients
cp. Call these columns w; = (wj1,...,w;i,)? for i = 1,...,po. Applying Lemma 73

yields
di da dp,
(Xy)mfpoJrlfiwl + (Xy)m—po+2—z‘w2 L (Xy)mfiwpo

According to Lemma 73, the d; are constant for fixed m and ¢. By assumption |u| < e™.
Hence, all components of u are less than . From this, we obtain |>, w; | < ™. This
implies

v =

P
K

dy dp
= (jgg?;;izalT:zEEIQULk'*"'4-ngg?p;:zEEZQUPmk
k

k
dy dp,
< (XY )m—poti—i D wi+t (XY )i > Wnok
k k
die™ dp,e™
< (XY )m—poti=i Tt ' (XY )m—i

_ oGyﬁg%ﬂ7>+m+o<G§%7>

145



Application of the method

Therefore, |, vx| can be bounded by O ((Xy),f%)

Lemma 77 Let u:= ) ;. pcpb be a linear combination of vectors in B with |lu < e™.
For fited m and t and for every removed column x'y™t7 in the YU block (1<j<t,0<
i <m —pj), the entry x'y"tI in the reconstruction vector t = > bei Cob can be bounded

by(9<

em

Proof: The proof is completely analogous to the proof of Lemma 76. We apply
Lemma 75 and write the removed column z'y*t/ as a linear combination of the Dj
columns g™ Pitlym=—pj+1+i  gmymti in B, where the entries in each of the pj vec-
tors are multiplied by the coefficients ¢;. The remainder of the proof follows the reasoning
in Lemma 76 and is therefore omitted.

From Lemmas 76 and 77, we can conclude that if we use the reconstruction vector
instead of the short vector u, we do not enlarge the norm significantly: Every entry of
a removed column contributes to the norm of u with a term of at most O(%) This
shows the correctness of our approach and concludes the proof of Theorem 72. &

7.4 Application of the method

The new lattice bases construction (LBC) method that we proposed in the previous
section offers a large variety of different bases that can be used in order to attack RSA
with small secret exponent d. There are three key observations how to optimize the
choice of a lattice bases:

1. If we analyze the Boneh-Durfee basis Bgp, we see that the entriels on the diagonal
of the X-blocks of Bpp imply a Wiener-like bound of d < N41. Moreover, the
entries on the diagonal of each X; block alone imply tlhe same bound on d. Hence
in order to get a bound significantly greater than N4, one should use as few X-
blocks as possible.

2. Not every vector in the Y-block helps to improve the bound on d. In the analysis
of the bound we have to satisfy a condition of the form

det(L) < emdim(E),

This condition tells us when a vector can be used to improve the bound: Assume
this inequality holds and we add a new vector to the lattice bases which contributes
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to det(L) by a factor smaller than ™. Then, the right-hand side increases by a
factor of exactly €™ in the inequality since the dimension goes up by 1, but the left-
hand side increases by a smaller factor. Hence, we can use a slightly larger value
for the upper bound on d, thereby increasing the determinant and the inequality
will still hold.

Summarizing the above observation: Every vector which contributes to the de-
terminant with a factor smaller than €™ is helpful! Since our new lattice basis
construction method produces only triangular bases this means that every vector
in the Y-blocks of Bgp with diagonal entry smaller than €™ is helpful. Hence, we
should use as many of these vectors as possible.

3. In the analysis of the theoretical bounds, we assume that the RSA-modulus N and
the lattice dimension dim(L) both go to infinity. However, in order to get good
attacks in practice, one should use a parameter choice which gives good results for
the size of d while keeping the lattice dimension as small as possible. So, we are
also interested in lattice bases with a small number of vectors.

Following the first and third suggestion, one should use a lattice bases where the number
of X-blocks is as small as possible. The pattern

Pli=(t+1,t t—1, ..., 1)

is an input for our lattice basis construction algorithm that satisfies the strictly decreasing
pattern restriction and has a minimal number of X-blocks while using as many helpful
vectors from the Y-blocks as possible.

On the other hand, we could also take the maximum number of helpful vectors in the
Y-block. Let p;,j < t, be the number of vectors in the Yj-block of Bpp with diagonal
entry smaller than €. Then the pattern

P2 = (m+17 P1, P2, P3,---» pt)

maximizes the number of helpful vectors from the Y-block. It remains to show that Ps is
also a valid input pattern for our LBC-algorithm, i.e., it is a strictly decreasing pattern.
Therefore, we prove the following two properties.

e The diagonal entries Yj1,...,Y},, within each Yj-block have strictly decreasing
sizes. This implies that the helpful vectors are the last vectors of each Y;-block
and our LBC-algorithm leaves them in the new basis.

e The pattern P» satisfies the strictly decreasing pattern constraint of our LBC-
algorithm.
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In order to see the first property, notice that by going from the k" vector in a Y;-block
to the (k + 1)%! vector, the diagonal entries decreases by e and simultaneously increase
by a factor of XY. Hence, whenever

e> XY,

the diagonal entries have strictly glecreasing sizes. This condition implies that the upper
bound X for d is smaller than N2, which surely holds for our attacks.

In order to show the second property, we prove that P is a strictly decreasing pattern.
To show the inequality m + 1 < p1, we observe that the largest vector among the m + 1
vectors in the Yj-block has diagonal entry €Y > €. Therefore, it is not a helpful
vector.

In order to prove that p; < pj;1, 0 < j < t, we show that if the k" vector in block Y;
is not a helpful vector, then the (k + 1) vector in the subsequent block Y;;; must also
have a diagonal entry that is too large. The diagonal entry of vector Yjy is ek xkyitk
and the diagonal entry of Yj 1 41 is €™ #LXFFLIYTHFH2 The second term is greater
than the first one whenever

XY? >e.

This is satisfied since Y2 > N > e. Therefore, the number of helpful vectors in the
Y;-blocks strictly decreases with growing j, which implies that P, defines a strictly de-
creasing pattern.

The vectors corresponding to the pattern P» form the lattice basis that was used
by Boneh and Durfee in order to show the bound of d < N%292. In contrast to our
analysis, Boneh and Durfee do not remove columns to make the basis triangular but
instead they introduce so-called geometrically progressive matrices in order to show that
the determinant mainly depends on the last entries of the chosen vectors.

Our analysis yields an alternative proof of the bound d < N%292. The pattern P,
achieves a theoretical bound of d < N2 which is worse than the Boneh-Durfee bound,
but from a practical point of view the pattern P; is sometimes preferable since it achieves
better values for smaller lattice dimension.

Let By(m,t) and Bs(m,t) be the lattice bases when our lattice basis construction
algorithm is applied to the Boneh-Durfee basis Bgp(m,t) with the patterns P; and P,
respectively.

For the rest of this section, we will assume that the size of e is in the order of the
size of N. It is straightforward to generalize the following two theorems to arbitrary e.
The attacks work for larger d if e is significantly smaller than N. On the other hand,
the attacks can be completely counteracted by choosing e suitably large (in the case of
the Boneh-Durfee attack: e > N187).
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Theorem 78 Let € > 0. Furthermore, let the upper bound X for the secret exponent d

satisfy

V61
5 —€

X =N

and let Y := 3Nz. For suitably large N,m,t the following holds: On input By(m,t) the
L3-algorithm outputs two vectors with norm smaller than ﬁ"&)

Proof: Let L be the lattice spanned by Bj(m,t) and let n denote the dimension of L.
It is not hard to see that n = (m + 1)(¢ + 1). According to Theorem 4, we know that
the second-to-shortest vector v9 of an L3-reduced basis of L satisfies

Joa]| < 2% det(L)wT.

In order to apply Howgrave-Graham’s theorem (Theorem 14), we need to satisfy the
condition
f det(L)T < <
21 de N
We neglect all terms that do not depend on N. Thus, our condition simplifies to det(L) <
¢™("=1)  Furthermore, we set ¢ :== 7m. A straightforward calculation shows that

det(L) = (637 XT37372+6TYTS+3T) gm? (1+o(1)

We plug in the bounds X = N\/g;l*e, Y = 3Nz, Using e = N'=°() and neglecting low

order terms, we obtain the new condition

(3+2V6)72 4+ 6(1 — V6)T —3(9 +4V6) <0

for m — oo. The function on the left hand size is minimized at the point 7 = 35%;;).

For this choice of 7, our condition is satisfied. This concludes the proof of Theorem 78.

Next, we derive the Boneh-Durfee bound of d < N9-292,

Theorem 79 Let € > 0. Furthermore, let the upper bound X for the secret exponent d

satisfy
X = NV

and let Y := 3N3. For suitably large N,m,t the following holds: On input Ba(m,t) the
L3-algorithm outputs two vectors with norm smaller than WHEL)'

Proof: The proof is similar to the proof of Theorem 78.
Let L be the lattice that is spanned by the basis Bo(m,t) and let n := dim(L).

Furthermore, let § :=1 — % — €.
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First, we want to optimize the parameter t. Remember that we choose in the pattern
P; all helpful vectors from the Y-block, i.e., all vectors with diagonal entry at most " in
the basis matrix By(m,t). Observe that the vector V; ,, has the diagonal entry X my m+t
in Bo(m,t). This vector is helpful as long as XY™+ < ™. Neglecting low order
terms, this gives as the restriction ¢t < m(1 — 24).

Second, we observe that a vector Y;; has the diagonal entry em*kaYk'*j . A
straightforward calculation shows that this vector is useful when k > 1Z5. Summa-
rizing, we use all vectors Yj;, with j =1,...,m(1 —26) and k = 1%25, ...,m (we neglect
roundings) in our lattice basis.

Now we are able to compute the determinant

13 (1—o
det(L) = (63726X4(175)Y4(571)2>6 *(1-o1)

In order to apply Howgrave-Graham’s theorem (Theorem 14), we have to satisfy a re-
lation of the form det(L) < ™1 (see the proof of Theorem 78). It is not hard to
see that m(n — 1) = (1 — d)m3(1 — o(1)). Using the bounds on X, Y and e and again
neglecting low order terms, we obtain the new condition

—262+46 -1 < 0.

This condition is satisfied by our choice of §, which concludes the proof.

We implemented our new method and carried out several experiments on a Linux-PC
with 550 MHz using the pattern P, := (¢t +1,¢,t —1,...,1). The L3-reduction was done
using Victor Shoup’s NTL library [63].

In every experiment, we found two vectors with norm smaller than \e/—% Interestingly
in the experiments, we made the following observation:

The reduced lattice basis contained not only two sufficiently small vectors, but all
vectors in the L3-reduced basis of L had about the same norm.

We find this experimental observation quite surprising. One might be tempted to use
this fact in order to extract the secret root (xg,yo) by simple linear algebra: Since the
basis vectors are linear independent, we can try to solve the system of linear equations
in the unknowns x*3/ by doing Gauss elimination. However, this approach will not work
since we cannot use the triangular quadratic lattice basis itself but the corresponding
non-triangular basis, where the basis vectors consist of the corresponding reconstruction
vectors. Hence, we have more unknowns z’y’ than equations and we cannot hope to find
a unique solution of the linear system. At the moment, we do not know how to use the
observation above.
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In our experiments, the resultant of two polynomials was computed using the Maple
computer algebra system (version 8). The resultant with respect to x was always a
polynomial in y, and the root delivered the factorization of N. Our results compare well
to those of Boneh and Durfee in the Eurocrypt paper [12]. Boneh and Durfee ran new
experiments in [13], but used additional tricks to enlarge d by a few bits:

1. Lattice reduction with Schnorr’s block reduction variant [57].
2. Use of Chebychev polynomials (a trick due to Coppersmith [21]).

3.1t [p(eX,yY)|| < - ™/, one knows [p(xo,y0)| < c- e and p(ro,y0) =
0 mod e™. Hence, one can guess v € (—c,c¢) such that p(x,y) + ve™ satisfies
p(xo,y0) + ve™ = 0 over Z.

These tricks apply to our method as well, but we did not implement them. Comparing
instances with the same bit-size of p,q and the same 0 as in [12], our algorithm with
pattern P; was several times faster due to the reduced lattice dimension. The following
table contains the running times that we obtained. Where available, we also included
the corresponding running times as provided in [12] (these running times were achieved
on a 400 MHz SUN workstation).

D, q ‘ 0 ‘ m ‘ t ‘ w ‘ our running time | running time in [12] ‘
1000 bits | 0.265 4 2 15 6 minutes 45 minutes
3000 bits | 0.265 4 2 15 100 minutes 300 minutes
3000 bits | 0.269 5 2 18 8 hours -
500 bits | 0.270 6 2 21 19 minutes -
500 bits | 0.274 8 3 36 300 minutes -
500 bits | 0.2765 10 4 55 26 hours -
500 bits | 0.278 11 5 72 6 days -

In all examples, we chose d uniformly with ¢ log(N) bits until logy(d) was equal to &
within precision at least 10~*. The running time measures only the time for L3-reduction.
With growing m and ¢, the time for resultant computation can take longer than reducing
the lattice basis B(m, ).

7.5 A case where the resultant heuristic fails

As mentioned before, if Lpgp is constructed using only z-shifted polynomials g; j, then the
Boneh-Durfee method always failed in our experiments. More precisely, the polynomials
we obtained from the two shortest vectors in an L3-reduced basis for Lgp led to two
polynomials whose resultant with respect to  was identically 0. We want to explain
this phenomenon.
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Using the construction of Section 7.3 for Bgp(m,0) with the pattern P = (1), the
lattice L consists only of the vectors in the block X,,, with the columns in X (™. A simple
determinant computation shows, that for every | < m there is a linear combination of
vectors in block X; that is shorter than e provided ¢ < 0.25.

Moreover, unless a combination of vectors in block X; is much shorter than e™
(according to Lemma 76 it must be of size O(&5-) in order to be helpful, since the
(m=1) column block are already of size (’)(;—n;,)), combinations of vectors
from different blocks X;, X; cannot be shorter than vectors obtained as combinations of
vectors from a single block. Although not a rigorous proof, this explains the following
observation. In our experiments every vector in an L3-reduced basis for the original
Bgpp(m,0) was a combination of basis vectors from a single block X;. In fact, the
following was true for arbitrary Lgp, even those constructed using y-shifts: Every vector
in an L3-reduced basis for Lgp that depended only on basis vectors in the X-block was
a combination of basis vectors from a single block Xj.

Now assume that we have a vector that is a linear combination of a single X! block
with a sufficiently small norm satisfying the second condition of Howgrave-Graham’s
theorem, e.g. the corresponding polynomial p(z,y) has the root (xg, yo) over the integers.
The following theorem tells us how to extract the secret root (xg, yo) and the factorization
of N in time polynomial in the bit-size of N.

entries in the X

Theorem 80 Let p(z,y) be a polynomial that is a non-zero linear combination of the
X;-block with p(xo,y0) = 0. Then the factorization of N can be found in polynomial
time.

Proof: Write l

p(x,y) = Z Gt T (x, y)e™

i=0
Now we evaluate p(z,y) at the point (g, yo). Since f(xg,vy0) = k(A—(p+q))—1 = —ed,
we obtain the equation

l
p(zo,y0) = €™ Z cirhtdh =0
1=0
in the unknown parameters zg and d. Hence the polynomial
q(z,2) = col + erat 2 4 coal 7222 o 4 2
must have the root (xg,29) = (k,d) over the integers. Since
cok! = —d(crk! ™ + ek 72 + ¢d' )

and ged(d, k) = 1, we see that d must divide ¢y. Analogously, one can show that k
must divide ¢;. On the other hand we may not be able to recover the unknowns d, k in
polynomial time by factoring ¢y, ¢;.
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A case where the resultant heuristic fails

Therefore, we propose another way to extract the secrets d and k. Observe that
q(z, z) does not only contain the root (xg,z9) but also every multiple (azg, azp), a € Z,
as a root. Hence the irreducible polynomial h(x,z) = zpz — xoz, which contains all
the roots (axg,azp), must divide g(z,z). Therefore we can obtain an integer multiple
b-h(zx,z) = hix + haoz of h by factoring ¢(z, z) into irreducible polynomials over Q[z, z|.

Since ged(xo, z9) = ged(k,d) = 1, we obtain d = m and k = —m.
Finally, the knowledge of d and k gives as the term p + ¢ from which we derive the
factorization of N.

In the proof of Theorem 80, we showed that one can extract from every linear com-
bination of vectors of an X-block a linear bivariate polynomial h(z,z) that yields the
secret parameters k and d. Since this holds for every X-block, we conclude in the follow-
ing corollary that vectors constructed from different X-blocks must share a non-trivial
greatest common divisor polynomial.

This implies that the resultant heuristic does not apply for our special settings,
since the resultants all vanish. However, on the other hand this does not imply that
Coppersmith’s method fails in general for this case, since we can extract the roots by
applying Theorem 80.

Hence, as a positive side-effect of the failure of the resultant heuristic we obtain a
provable method that extracts the secrets of a bivariate polynomial of a special form.
Now let us prove that the resultant heuristic indeed cannot be applied for the case
mentioned above.

Corollary 81 Let pi(x,y) and pa(z,y) be polynomials that are non-zero linear combi-
nations of the Xi, -block and X,-block, respectively. If pi(xo,yo) = p2(zo,y0) = 0 then
p1 and po share a non-trivial greatest common divisor.

Proof: We follow the reasoning of the proof of Theorem 80: By substituting ez = f(x,y)
we can show that the polynomial h(x,z) = dx — kz divides both polynomial p; and ps.
But then p; and psy share the polynomial dx — % f(z,y) as a common divisor. This poly-
nomial must also divide ged(py, p2) which concludes the proof.
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